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PREFACE
Over	the	past	15 years	I	have	had	the	pleasure	of	teaching	mathematics	at	a	small,	student-
centered	liberal	arts	college.	During	that	time	I	have	taught	students	of	all	interests	and
abilities,	and	a	considerable	amount	of	my	time	and	energy	has	been	devoted	to	teaching
mathematics	to	nonmathematics	majors.	These	students	are	typically	taking	mathematics	to
satisfy	a	graduation	requirement,	and	for	most	of	them	the	class	they	take	with	me	will	be	the
last	mathematics	class	they	will	ever	take.	For	such	students	I	feel	a	special	responsibility	to
make	their	one	mathematics	class	a	satisfying,	engaging	experience.	Over	the	years	of	trying
many	different	texts	and	approaches,	I	came	to	realize	that	a	text	for	the	kind	of	course	I	really
wanted	to	share	with	these	students	did	not	yet	exist.	Thus,	I	began	writing	my	own	in	hopes	of
creating	a	text	with	the	qualities	I	believe	are	necessary	to	provide	the	kind	of	experience	I
want	for	my	students,	one	based	on	mathematics	and	applications	that	are	relevant,	authentic,
and	accessible.

The	topics	presented	in	the	text	have	been	carefully	selected	to	be	of	relevance	and	interest	to
a	general	audience.	Furthermore,	problems	throughout	the	text	are	personalized	in	that	they
invite	readers	to	supply	their	own	numbers	when	making	a	model	projection.	The	questions
below	are	examples	of	the	kinds	of	questions	readers	will	find:

How	much	do	you	need	to	save	each	month	to	reach	your	retirement	goal?

Is	a	lease	takeover	for	the	car	you	want	a	good	deal?

What	will	the	mortgage	payment	be	for	your	dream	house?

What	will	your	blood	alcohol	concentration	be	after	two	of	your	favorite	drinks?

How	much	will	you	weigh	in	6	months	if	you	follow	a	given	diet?

What	will	your	body	fat	percentage	be	1	month	from	today	if	you	become	more	active?

Who	was	the	best	team	in	your	favorite	sport	last	season?

What	would	happen	if	there	were	an	outbreak	of	Ebola	in	your	hometown?

How	many	cups	of	Starbucks	coffee	could	you	have	and	still	be	under	the	NCAA
competition	limit	for	caffeine?

Questions	like	these	and	others	are	found	throughout	the	text.	It	is	my	hope	and	my	belief	that
readers	will	find	their	solutions	interesting	and	their	answers	truly	useful.

As	a	mathematics	book	this	text	is	somewhat	nontraditional.	In	a	traditional	mathematics	text,
the	mathematical	content	comes	first,	sometimes	followed	by	a	few	cursory	applications.	As
readers	can	tell	by	a	quick	glance	at	the	table	of	contents,	this	text	is	very	much	applications
driven.	Here	there	are	no	chapters	on	“Solving	Systems	of	Equations”	or	“The	Quadratic
Formula.”	Instead	there	are	chapters	on	blood	alcohol	concentration,	body	weight,	and
infectious	diseases.	Within	those	chapters	the	necessary	mathematics	for	creating	and	analyzing



the	models	is	presented	as	it	is	needed.	In	organizing	the	text	this	way,	there	is	no	opportunity
to	ask	of	the	mathematics,	“What	is	this	good	for?”	because	the	mathematics	only	comes	up	if	it
is	needed	to	answer	a	real	question.	We	will,	incidentally,	solve	a	few	systems	of	equations,
and	we	will	occasionally	need	the	quadratic	formula,	but	these	are	the	“means,”	not	the	“ends.”

The	models	presented	in	this	text	are	authentic—	that	is,	they	are	real	mathematical	models
developed	to	answer	real	questions,	not	artificial	or	forced	applications	of	the	mathematical
material.	Most	of	the	models	can	be	found	in	the	literature	of	the	relevant	discipline	and,	with
few	exceptions,	parameter	values,	constants,	data,	etc.,	are	all	taken	from	research	on	the
subject	at	hand.	Sources	for	all	models,	parameters,	and	data	are	cited	so	that	the	reader	may
verify	them	or	pursue	further	information	as	desired.	The	few	numbers	that	are	estimated	by	the
author	or	that	serve	as	stand-in	values	are	so	noted	in	the	text.

To	keep	the	text	accessible	to	a	general	audience,	the	mathematical	content	and	technology
requirements	have	been	selected	to	keep	prerequisites	to	a	minimum.	Thus,	the	text	focuses	on
only	one	type	of	model:	discrete	dynamical	systems.	Though	the	name	may	sound	daunting	to
those	unfamiliar	with	it,	at	its	heart	a	discrete	dynamical	system	is	simply	a	way	of	describing
how	something	changes	from	one	time	step	to	the	next.	Once	that	change	is	understood,	its
repeated	application	allows	us	to	make	long-term	predictions.	Thus,	we	do	not	need
sophisticated	equations	to	generate	results,	and	only	high	school	algebra	is	assumed	in	the	text.

The	idea	of	a	discrete	dynamical	system	has	been	around	for	a	very	long	time.	After	all,
observing	how	a	quantity	changes	from	one	time	to	the	next	is	a	natural	kind	of	thing	to	do.
However,	if	one	attempts	to	use	a	discrete	dynamical	system	to	project	a	quantity	very	far	into
the	future,	it	quickly	becomes	impractical	to	do	the	calculations	by	hand.	The	structure	of
discrete	dynamical	systems	and	how	they	are	calculated	make	the	use	of	spreadsheet	software
like	Microsoft®	Office	Excel®	a	perfect	match.	With	such	a	tool	we	can	focus	on	setting	up
and	understanding	a	model,	leaving	the	tedious	calculations	to	Excel.	Excel	is	also	a	widely
used	tool	throughout	the	business	world,	and	knowing	how	to	use	it	is	a	valuable	skill	on	its
own.	To	ensure	that	the	use	of	Excel	is	really	a	benefit	to	the	reader	and	not	an	additional
barrier	to	learning,	no	prior	knowledge	of	Excel	is	assumed.	The	text	employs	step-by-step
screenshots	of	Excel	techniques	as	an	integral	part	of	the	presentation	with	the	implicit
assumption	that	the	reader	has	never	opened	the	program	before.

HOW	TO	USE	THIS	BOOK
Any	engaging	and	satisfying	mathematical	experience	must	involve	doing	mathematics	as
opposed	to	just	witnessing	it.	Thus,	I	encourage	readers	to	follow	along	by	creating	their	own
spreadsheet	models	as	they	are	presented	in	the	text.	It	will	also	save	much	time	later	in	the
exercises	if	these	spreadsheets	are	saved	in	an	easily	accessible	way,	with	folders	organized
by	chapter	and	section.	The	use	of	descriptive	file	names	such	as	“Widmark	Blood	Alcohol
Concentration	Model”	will	also	make	models	easier	to	locate	when	it	is	time	to	work	the
exercises.

As	with	any	mathematics	text,	the	exercises	are	an	integral	part	of	the	learning	experience.



They	serve	to	reinforce,	deepen,	and	extend	the	reader’s	knowledge	and	skill.	Exercises	are
suggested	at	the	end	of	each	section.	These	will	go	most	smoothly	if	the	reader	has	already
created	the	spreadsheets	for	the	models	developed	in	the	section	as	many	exercises	require	the
reader	to	apply	those	models.	The	exercises	range	in	difficulty	from	routine	calculations	to
more	difficult	conceptual	questions.	Some	exercises	are	tagged	as	Extension	problems.	These
problems	require	something	not	discussed	explicitly	in	the	text.	Some	are	purely	mathematical
in	nature,	but	most	of	them	involve	making	modifications	to	the	models	in	the	text	in	order	to
improve	the	model	or	apply	it	in	a	slightly	different	context.	Thus,	these	are	exercises	where
the	reader	will	be	engaged	in	the	process	of	modeling	as	opposed	to	the	use	of	existing
models.	Both	are	useful	skills.	The	Extension	exercises	are	generally	open	ended	with	more
than	one	reasonable	answer,	and	they	also	range	in	difficulty.	They	are	meant	to	be	stimulating
and	fun,	and	it	is	my	hope	that	the	reader	will	attempt	many	of	them.

The	mathematical	modeling	material	is	organized	by	chapter,	section,	and	subsection.	The
Excel	material	is	marked	by	sections	numbered	E1,	E2,	etc.,	in	order	to	make	it	easier	for	the
reader	to	reference	specific	Excel	topics.

Unlike	many	mathematics	texts,	the	material	does	not	“build	on	itself”	as	the	text	progresses.
The	book	is	semimodular	in	structure	in	that	once	Chapter	1	has	been	digested,	it	is	possible	to
read	the	remaining	chapters	in	any	order	according	to	the	reader’s	interests.	If	chapters	are
skipped,	it	will	only	occasionally	be	necessary	for	the	reader	to	refer	to	a	previous	section	for
a	relevant	definition	or	Excel	technique.	The	sequence	of	topics	as	presented	in	the	table	of
contents	is	only	a	suggestion.

JEFFREY	T.	BARTON
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1	
DENSITY-INDEPENDENT	POPULATION	MODELS
This	chapter	is	our	introduction	to	discrete	dynamical	systems,	which	are	mathematical
models	that	involve	the	repeated	application	of	relatively	simple	equations.	In	this	chapter	we
set	the	stage	by	developing	the	language,	notation,	and	tools	that	will	be	fundamental	to	our
model	building	and	analysis.	In	particular,	we	show	how	to	represent	a	model	graphically
using	a	flow	diagram,	and	we	show	how	to	implement	models	using	the	spreadsheet	software
Microsoft	Excel.	We	begin	our	discussion	of	modeling	in	the	context	of	population	growth,	but
we	will	soon	see	that	the	mathematics	we	develop	is	immediately	applicable	to	other
situations	as	well.

1.1	EXPONENTIAL	GROWTH
When	a	biologist,	ecologist,	or	wildlife	manager	studies	a	population,	certain	fundamental,
quantitative	questions	immediately	arise:

How	many	are	there	in	the	population?

How	many	will	there	be	in	the	future?

How	fast	is	the	population	growing	or	declining?

If	a	population	is	declining,	is	it	due	to	a	low	birth	rate	or	excess	mortality?

What	will	be	the	effect	of	human	efforts	to	manage	the	population?

What	will	be	the	effects	of	natural	disasters	on	the	population?

The	material	in	this	chapter	describes	some	of	the	attempts	that	mathematicians	and	scientists
have	made	to	answer	these	and	similar	questions	through	mathematical	modeling.	A
mathematical	model	is	a	mathematical	description	of	a	situation	whose	purpose	is	to	help	us
understand	it	or	predict	how	it	will	change.

The	mathematical	models	that	we	consider	first	are	models	of	populations	that	are	said	to	be
density	independent.	A	density-independent	population	is	one	whose	rate	of	growth	or
decline	does	not	depend	on	its	size.	For	example,	a	population	that	always	grows	by	10%	per
year	whether	the	population	is	5	or	5,000,000	would	be	considered	density	independent
because	the	growth	rate	does	not	change	with	the	size.	Similarly,	a	population	that	declines	by
20	members	per	year	regardless	of	its	size	would	also	be	considered	density	independent.
Many	real	populations	exhibit	this	property,	though	usually	over	relatively	short	time	intervals.

A	population	is	said	to	exhibit	exponential	growth	if	it	increases	by	the	same	percentage	each
year.	In	1798	the	influential	English	economist	Thomas	Malthus	suggested	that	the	world’s
human	population	was	growing	exponentially.	He	further	argued	that	the	growth	of	the	human



population	would	outstrip	the	growth	of	the	world’s	food	supply,	a	situation	that	would	of
course	lead	to	a	stark	and	difficult	existence	(Malthus,	1798).	Malthus	was	in	fact	not	the	first
to	make	this	claim;	he	was	preceded	in	this	hypothesis	by	the	Swiss	mathematician	Leonhard
Euler	(1707–1783)	(Murray,	1993).	In	any	case,	due	to	Malthus’s	pioneering	work,
exponential	growth	is	sometimes	referred	to	as	Malthusian	growth.

As	will	be	our	habit	throughout	the	book,	we	introduce	our	mathematical	model	by	using	real
data	from	a	real	situation.	In	this	first	case	we	study	the	population	of	grizzly	bears	in
Yellowstone	National	Park.

1.1.1	Modeling	Yellowstone	Grizzlies
The	population	of	grizzly	bears	in	Yellowstone	National	Park	is	an	example	of	the	successful
management	and	subsequent	recovery	of	an	endangered	species.	Through	the	problems	and
discussion	that	follow,	we	will	learn	about	the	history	of	the	bear	population	and	make
predictions	about	its	future	using	an	exponential	population	model.

A	theme	that	we	will	emphasize	as	we	go	along	is	that	in	order	to	create	a	mathematical	model,
we	must	make	simplifying	assumptions	about	the	situation	we	are	modeling.	We	must	also
continually	ask	ourselves	whether	the	assumptions	we	have	made	are	reasonable	or	whether
we	have	simplified	the	situation	so	much	that	our	model	is	no	longer	useful.	Here	we	assume
that	the	grizzly	population	exhibits	exponential	growth	during	the	time	period	of	interest.	This
assumption	is	reasonable	based	on	data	presented	in	the	sources	cited	below.

Example	1.1:

In	1993,	the	National	Biological	Service	estimated	that	the	population	of	grizzly	bears	in
Yellowstone	National	Park	was	197	and	that	it	was	growing	at	a	rate	of	1%	per	year
(Mattson,	Wright,	Kendall,	&	Martinka,	1993).	Based	on	these	estimates,	what	would	you
predict	the	population	to	be	in	2002?

Before	making	progress	on	this	problem,	we	take	a	few	moments	to	set	up	our	notation
and	outline	the	approach	that	we	will	use	throughout	the	text.	The	goal	of	employing
mathematical	notation	is	conciseness,	though	sometimes	an	unintended	consequence	of	its
use	is	a	sacrifice	of	clarity.	We	will	try	to	keep	this	in	mind	and	introduce	no	more
notation	than	is	truly	necessary.

In	general,	we	denote	the	amount	of	time	that	has	elapsed	from	the	start	of	a	problem	by	t
and	the	population	in	question	by	P.	The	time,	t,	is	called	the	independent	variable
because	it	does	not	depend	on	anything	else;	since	the	population	P	varies	with	time,	we
call	P	the	dependent	variable.	Making	use	of	function	notation,	we	write	P(t)	to	mean	the
population	t	years	after	the	start	of	the	problem.	Thus,	the	notation	 	means	the
population	1 year	earlier,	or	the	previous	year’s	population.	For	example,	if	 ,	then	

	represents	the	population	after	5 years.	Then	 ,	which
gives	the	population	in	the	previous	year.	Along	the	same	lines,	the	notation	P(0)



represents	the	initial	population,	or	the	population	after	0 years	have	passed.	The	function
notation	P(t)	is	easily	confused	with	multiplication	as	in	“P	times	t”;	it	is	important	to
remember	that	P(t)	is	just	a	shorthand	way	of	writing,	“the	population	after	t	years	have
passed.”	All	of	our	notation	should	gradually	seem	more	natural	as	we	gain	experience
using	it.	When	dealing	with	a	population	that	is	growing	or	declining	by	a	set	percentage
each	year,	it	will	be	our	habit	to	use	a	lowercase	r	to	denote	this	percentage,	and	we	call	r
the	growth	rate	parameter.

Returning	to	Example	1.1,	we	make	our	notation	explicit:

t = the	number	of	years	since	1993.

P = the	population	of	grizzly	bears	in	Yellowstone.

P(t) = the	population	of	grizzlies	t	years	after	1993.

P(0) = the	initial	population	of	grizzlies	(so	using	the	information	in	Example	1.1,	
).

r = the	annual	growth	rate	(so	in	this	problem,	 	or	 ).

With	our	notation	in	place,	we	solve	the	problem	by	constructing	a	type	of	mathematical
model	known	as	a	discrete	dynamical	system	(DDS).	A	DDS	is	a	mathematical	model
that	relates	a	quantity	at	one	point	in	time	to	the	same	quantity	at	a	previous	point.	In	our
current	example,	this	means	our	model	should	relate	the	population	of	grizzlies	in	1 year
to	the	population	in	the	previous	year.

The	key	to	setting	up	any	DDS	is	to	develop	a	thorough	understanding	of	how	the
dependent	variable—in	this	case,	P,	our	population	of	grizzlies—changes	from	one	point
in	time	to	the	next.	A	helpful	first	step	in	developing	such	an	understanding	is	to	visualize
the	situation	by	drawing	a	flow	diagram.	In	a	flow	diagram:

1.	 We	represent	any	dependent	variable	by	drawing	an	oval	with	an	appropriate	label.

2.	 We	indicate	increases	in	the	variable	by	drawing	appropriately	labeled	arrows
pointing	into	the	oval.

3.	 We	indicate	decreases	in	the	variable	by	drawing	appropriately	labeled	arrows
pointing	out	of	the	oval.

In	the	grizzly	example,	we	have	one	dependent	variable,	the	bear	population,	and	each
year	it	increases	by	1%	of	its	previous	value.	Thus,	our	flow	diagram	for	the	situation	is
given	in	Figure	1.1.



FIGURE	1.1	Flow	diagram	for	grizzly	population	growing	by	1%	each	year.

The	diagram	tells	us	that	from	1 year	to	the	next,	the	population	increases	by	1%	of	its
previous	value.	To	find	P(t),	we	start	with	the	population	from	the	previous	year,	 ,
and	we	add	1%	of	 	to	it.	Translating	this	statement	into	a	mathematical	equation
produces	our	first	DDS:

We	have	just	constructed	a	mathematical	model	of	the	Yellowstone	grizzly	bear	population
by	translating	information	about	how	the	population	is	growing	into	a	mathematical
equation.	Though	future	situations	may	be	more	complex,	this	is	the	process	we	mean
when	we	say	that	we	are	going	to	model	a	situation	mathematically:	(i)	learn	about	how
the	situation	is	changing,	(ii)	visualize	the	situation	with	a	flow	diagram,	and	(iii)	translate
the	diagram	into	an	equation.

One	purpose	of	our	model	is	to	allow	us	to	calculate	values	for	the	dependent	variable
over	time.	As	an	example	of	how	to	do	this,	we	use	the	present	model	to	calculate	the
grizzly	population	in	1994.	Since	1 year	has	passed	since	1993,	we	have	 	(and	

).	According	to	our	DDS,	the	population	in	1994	will	be

We	predict	that—based	on	our	assumptions	and	available	data—there	will	be	199	grizzly
bears	in	Yellowstone	in	1994.	Note	that	we	substituted	in	the	initial	value	 	and
rounded	to	the	nearest	bear.	Finding	the	population	in	1994	is	progress,	but	the	original
question	asked	us	to	predict	the	population	in	2002.	We	get	closer	by	calculating	the
population	in	1995.	As	we	continue	to	make	predictions	farther	into	the	future,	we	save
rounding	for	our	final	answer.	We	use	unrounded	numbers	in	intermediate	steps.	Since	2 
years	have	passed	since	1993,	 	and	the	DDS	tells	us	that



We	have	found	that	 ,	that	is,	we	predict	there	will	be	201	Yellowstone	grizzlies
in	1995.

Hopefully	now	we	see	how	to	proceed:	we	calculate	the	population	for	any	year	past
1993	by	repeatedly	applying	the	DDS.	This	may	require	some	patience,	but	if	need	be	we
can	do	it.	We	summarize	the	rest	of	the	necessary	steps	for	Example	1.1	in	Table	1.1.

TABLE	1.1	Model	Predictions	for	Grizzly	Population	to	2002

Year t Apply	DDS Substitute	Previous	Value Result

1995 2 See	previous See	previous

1996 3

1997 4

1998 5

1999 6

2000 7

2001 8

2002 9

Finally	we	arrive	at	an	answer	to	the	original	question—we	predict	there	will	be	215
grizzly	bears	in	Yellowstone	in	the	year	2002.

Two	important	features	to	remember	about	the	DDS	method	are:

1.	 In	order	to	calculate	the	population	in	one year,	we	need	to	know	the	population	in	the
previous	year.

2.	 By	applying	the	DDS	enough	times,	we	can	compute	the	predicted	population	in	any	future
year.

It	does	not	take	many	hand	calculations	with	a	DDS	to	realize	that	the	aid	of	a	computer	would
be	welcome.	Next	we	see	how	to	arrange	for	Excel	to	help	in	carrying	out	the	tedious
calculations.

E.1	Introduction	to	Excel
In	this	Excel	section	we	introduce	the	layout	of	an	Excel	worksheet	and	discuss	entering



text,	entering	a	formula,	copying	a	formula	down,	toggling	between	formulas	and	values,
highlighting	cells	for	formatting,	and	rounding.
Start	Microsoft	Excel	and	open	a	blank	workbook.	What	we	should	see	is	pictured	in
Figure	1.2,	though	depending	on	the	particular	computer	or	software	version,	there	may	be
minor	differences	in	appearance.

FIGURE	1.2	A	blank	Excel	workbook.

The	main	part	of	the	worksheet	is	a	large	grid	with	columns	labeled	alphabetically	and
rows	labeled	numerically.	Excel	refers	to	cells	by	first	citing	the	column	letter	and	then
the	row	number;	it	also	indicates	the	active,	or	current,	cell	by	(i)	highlighting	the	border
of	the	chosen	cell,	(ii)	displaying	the	cell	reference	in	the	top	left	corner,	and	(iii)
highlighting	the	column	and	row	headings.	In	Figure	1.2,	we	can	see	that	the	active	cell	is
cell	D5.	To	select	a	cell,	we	may	either	point	and	click	on	the	cell	or	use	the	arrow	keys
to	move	around	the	grid.	Once	a	cell	is	selected,	we	may	type	text	or	a	formula	into	it.
Note	that	we	will	see	the	text	or	formula	appear	in	the	cell	itself	and	the	formula	bar	(see
Fig.	1.2)	as	we	type.

Next	we	see	how	to	use	our	spreadsheet	to	work	Example	1.1.	We	begin	by	giving	our
worksheet	an	appropriate	title.	Select	cell	A1	by	placing	the	mouse	pointer	over	the	cell
and	(left)	clicking.	Once	the	cell	is	highlighted,	type	“Yellowstone	Grizzly	Population,”
and	press	Enter	(or	Return).	The	worksheet	should	now	look	like	Figure	1.3.



FIGURE	1.3	Excel	workbook	for	grizzly	population	with	title.

Next	we	enter	column	headings	for	t	(the	number	of	years	past	1993)	and	the	population.
We	are	free	to	use	any	location	we	wish,	but	for	the	sake	of	consistency,	let	us	agree	to	use
cells	A3	and	B3.	After	typing	in	the	headings	and	the	initial	values	for	t	and	the
population,	the	spreadsheet	should	look	like	Figure	1.4.

FIGURE	1.4	Excel	workbook	for	grizzly	population	with	time	and	population	columns.

In	column	A	we	could	manually	type	the	numbers	up	to	 ,	but	for	later	applications	this
would	become	tiresome.	Instead,	we	enter	a	formula	into	cell	A5	that	will	tell	Excel	how
to	produce	the	values	we	want	for	t.	Since	going	from	1 year	to	the	next	amounts	to	adding
1	to	t,	in	cell	A5	we	tell	Excel	to	do	just	that	by	typing	the	formula	“=	A4 + 1”	as	pictured
in	Figure	1.5.	The	equals	sign	tells	Excel	that	we	are	typing	a	formula	and	not	just	text.	We
must	first	type	“=”	every	time	we	want	Excel	to	compute	a	formula!	The	formula	itself



tells	Excel	to	take	the	number	that	is	stored	in	cell	A4	and	add	1	to	it.	Once	we	hit	Enter,
Excel	will	calculate	the	formula	and	display	the	result,	in	this	case	“1.”

FIGURE	1.5	Excel	workbook	for	grizzly	population	with	formula	for	time	entered.

Notice	how	Excel	helps	us	keep	track	of	what	is	going	on	in	the	formula	by	highlighting
any	referenced	cell	with	a	color	that	matches	the	reference.	After	we	hit	Enter,	we	should
only	see	the	resulting	number	“1”	and	not	the	formula.	At	this	point	it	is	natural	to	ask,
“Why	would	I	bother	typing	a	formula	when	I	could	just	type	in	a	1?”	We	would	do	just
that	if	we	were	going	to	stop	at	 .	Here,	however,	we	want	to	go	all	the	way	to	 ,
and	inputting	the	formula	into	Excel	will	make	that	easier.

Click	on	cell	A5	so	that	it	is	highlighted.	Next,	position	the	pointer	over	the	dot	in	the
bottom	right-hand	corner	of	the	cell.	This	dot	is	called	the	fill	handle.	When	you	do	this,
the	thick	cross	should	turn	into	a	thin	cross.	While	the	pointer	is	a	thin	cross,	left-click	on
the	fill	handle,	and	without	releasing	the	mouse	button,	drag	the	pointer	down	a	few	rows.
Now	release	the	button.	The	screen	should	appear	as	in	Figure	1.6.



FIGURE	1.6	Excel	workbook	for	grizzly	population	with	time	formula	copied	down.

If	we	were	to	display	the	formulas	in	each	cell	instead	of	the	numerical	results,	we	would
see	what	appears	in	Figure	1.7.	What	Excel	has	done	is	copy	the	original	formula	to	all	of
the	highlighted	cells	while	at	the	same	time	updating	the	formula	for	each	cell	to	preserve
our	original	intent:	add	one	to	the	value	in	the	cell	above.



FIGURE	1.7	Grizzly	population	Excel	workbook	with	formulas	displayed.

Formulas	can	be	displayed	by	using	the	keyboard	shortcut	“CTRL+`”	(hold	down	the
control	key	and	hit	the	single	left	quote	key,	located	in	the	upper	left	corner	of	the
keyboard).	Repeating	the	“CTRL+`”	shortcut	takes	you	back	to	displaying	numerical
results	instead	of	formulas.	Again,	Excel	has	automatically	changed	the	formula	so	that	our
original	intent—“take	the	value	from	the	cell	above	and	add	1	to	it”—is	preserved	in
every	cell.

Now	we	turn	to	the	population	itself.	As	we	did	in	the	discrete	dynamical	system,	we
need	Excel	to	take	the	previous	year’s	population	and	add	1%	of	its	value.	The	initial
population	is	stored	in	cell	B4,	so	we	enter	the	appropriate	formula	in	cell	B5	(see	Fig.
1.8).



FIGURE	1.8	Excel	workbook	for	grizzly	population.

It	is	important	to	understand	the	formula	in	cell	B5:	it	tells	Excel	to	take	the	value	in	the
cell	above	and	add	1%	of	that	value	to	it.	Now	press	Enter	and	view	the	result.	We	should
get	exactly	what	we	first	did	by	hand.	Finally	we	get	a	glimpse	of	the	power	of	Excel	in
handling	a	DDS	when	we	copy	the	formula	down	as	before:	select	cell	B5,	grab	the	fill
handle	using	the	thin	cross,	and	drag	it	down	to	cell	B13.	In	Figure	1.9	we	see	the	results
of	Excel	having	automatically	calculated	the	population	for	all	9 years.



FIGURE	1.9	Grizzly	population	Excel	model	over	9 years.

What	was	formerly	laborious	to	do	by	hand,	we	have	just	accomplished	in	seconds	with
Excel.	To	reinforce	our	understanding	of	what	Excel	has	done,	we	once	again	press
“CTRL+`”	and	examine	the	copied	formulas	(see	Fig.	1.10).



FIGURE	1.10	Grizzly	population	Excel	model	with	formulas	displayed.

It	is	critical	before	going	on	to	understand	both	the	relationship	of	the	Excel	formula	to	our
original	DDS	and	how	Excel	automatically	updates	formulas	when	they	are	copied	down.

All	that	is	left	to	do	now	is	to	have	Excel	round	to	the	nearest	bear.	We	round	all	values
simultaneously	by	first	selecting	all	cells	that	contain	an	unrounded	number,	in	this	case
cells	B5–B13.	To	do	this	we	use	the	thick	cross	pointer	to	click	on	cell	B5,	drag	down	to
cell	B13,	and	then	release	the	mouse	button.	The	numbers	should	all	remain	as	they	are,
but	the	cells	will	be	highlighted.	Under	the	Home	tab	on	the	toolbar,	the	Number	group
includes	controls	for	formatting	numbers.	On	the	bottom	right	of	that	group	are	two	buttons
that	control	rounding	by	either	increasing	or	decreasing	the	number	of	decimal	places
shown	(see	Fig.	1.11).



FIGURE	1.11	Excel	Number	group	under	Home	tab.

Keep	clicking	the	button	until	only	whole	numbers	appear.	Note	that	even	when	Excel
displays	whole	numbers,	it	uses	the	unrounded	versions	in	all	of	its	computations.	It	is
worth	taking	a	moment	to	verify	that	all	of	the	population	values	agree	with	those	we
produced	by	hand	in	Table	1.1.

We	end	this	Excel	section	by	noting	a	couple	of	useful	Excel	shortcuts:

When	entering	a	formula,	we	can	just	left-click	on	the	cell	whose	address	we	want	to
enter	rather	than	having	to	type	the	cell	address	in	ourselves.	Excel	automatically
inserts	the	address	of	the	cell	we	click	into	the	formula.

If	we	have	already	copied	a	formula	down	in	one	column,	then	we	can	save	time	when
copying	formulas	down	in	adjacent	columns.	Instead	of	left-clicking	the	fill	handle	and
dragging	down,	we	can	just	double-click	on	the	fill	handle.	Excel	will	automatically
copy	the	formula	down	to	the	same	length	as	the	adjacent	column.

In	2002	the	National	Park	Service	put	together	a	new	estimate	of	the	grizzly	population	and
found	that	there	were	actually	around	416	bears	(Gunther,	2003).	This	indicates	that	the	bear
population	fared	much	better	than	our	initial	model	predictions,	which	in	turn	means	that
something	happened	between	1993	and	2002	that	we	did	not	account	for	in	our	simplifying
assumptions.

It	turns	out	that	the	difference	between	our	model’s	2002	predicted	value	and	the	actual	2002
estimate	can	be	attributed	to	the	successful	implementation	of	the	1993	Grizzly	Bear	Recovery
Plan,	prepared	by	the	US	Fish	and	Wildlife	Service,	which	outlined	three	recovery	goals	for
the	US	grizzly	population	(Servheen,	1993).	By	2002	all	plan	goals	were	achieved	(Gunther,
2003),	and	in	a	somewhat	controversial	move,	the	Yellowstone	grizzly	population	was
removed	from	the	Endangered	Species	List	in	late	2005	(USA	Today,	2005).	In	the	next
example	we	investigate	the	effect	that	implementation	of	the	recovery	plan	had	on	the	growth
rate	of	the	population.



Example	1.2:

Recognizing	that	the	grizzly	population	must	have	grown	at	a	faster	rate	than	1%	per	year,
estimate	the	actual	annual	growth	rate	from	1993	to	2002.

The	basic	setup	for	the	problem	is	the	same	as	before—the	difference	now	is	that	instead
of	a	growth	rate	of	1%,	the	growth	rate	is	unknown.	If	we	call	this	unknown	growth	rate	r,
then	our	flow	diagram	will	look	as	it	does	in	Figure	1.12.

FIGURE	1.12	General	exponential	growth	model.

The	diagram	tells	us	that	in	order	to	find	the	population	of	grizzlies	in	year	t,	we	take	the
population	in	the	previous	year	and	increase	that	value	by	r.	The	DDS	is	then

We	still	know	that	in	1993	(when	 )	there	were	197	bears,	and	now	we	also	know	that
in	2002	(when	 )	there	were	416	bears.	Translating	this	information	into	our	notation,
we	write	 	and	 .	Our	task	is	to	find	the	value	for	the	growth	rate,	r,
that	results	in	 .

E.2	Absolute	Addressing

In	this	Excel	section	we	show	how	to	insert	rows,	how	to	work	with	parameters	using
absolute	cell	addressing,	and	how	to	use	Excel	for	trial-and-error	estimates.

We	need	to	make	some	modifications	to	our	original	grizzly	bear	spreadsheet	to	make
it	easier	for	us	to	find	r.	To	this	end,	instead	of	typing	the	growth	rate	0.01	into	the
formula	for	population,	we	store	the	growth	rate	as	a	parameter	in	its	own	cell	and
then	refer	to	that	cell	in	the	population	formula.	Excel	then	uses	whatever	value	is	in
the	referenced	cell	when	it	computes	the	population	formula,	allowing	us	to	vary	the
growth	rate	with	ease.	Each	time	we	type	in	a	new	value	for	the	growth	rate,	Excel



will	automatically	recalculate	all	of	the	population	values	without	us	having	to
change	the	actual	formulas.

In	order	to	make	room	for	the	cell	where	we	have	stored	the	growth	rate	parameter,
we	must	insert	rows	into	the	spreadsheet	between	the	title	and	our	original	work.
This	is	accomplished	by	clicking	on	the	Insert	drop-down	menu	that	is	located	in	the
Cells	group	of	the	Home	tab.	We	then	select	“Insert	Sheet	Rows.”	The	new	setup	with
1%	entered	for	the	growth	rate	parameter	is	shown	in	Figure	1.13.	(To	get	the	growth
rate	to	appear	as	a	%,	use	number	formatting	under	the	Home	tab.)

FIGURE	1.13	Growth	rate	parameter	stored	in	its	own	cell.

Now	instead	of	typing	in	0.01	when	we	create	the	formula	for	the	population,	we
refer	to	the	location	of	the	parameter,	that	is,	cell	C3.	There	is,	however,	a	catch.
Since	we	want	Excel	to	always	refer	to	C3	to	get	the	growth	rate,	we	are	not	going	to
want	Excel	to	automatically	update	that	address	when	we	copy	our	formula	down.
The	remedy	for	this	is	to	type	dollar	signs	in	front	of	values	we	do	not	want	Excel	to
change.	Thus,	instead	of	typing	“C3,”	we	type	“$C$3.”	This	is	referred	to	as	absolute
addressing	or	absolute	referencing.	Our	finished	formula	appears	in	Figure	1.14.



FIGURE	1.14	Growth	rate	cell	referenced	with	absolute	addressing.

Copying	the	formula	down	and	displaying	all	of	the	formulas	yields	Figure	1.15.
Notice	that	the	absolute	reference	to	cell	C3	remains	unchanged	in	all	of	the	formulas
while	all	other	references	are	automatically	updated	by	Excel.



FIGURE	1.15	Absolute	addressing	prevents	cell	address	from	changing.

Even	though	this	spreadsheet	is	set	up	differently	from	our	original,	it	is	computing
the	same	values,	and	in	fact,	the	numerical	answers	at	the	moment	are	identical	to	the
ones	in	Figure	1.9.	The	crucial	difference	in	the	new	setup	is	that	each	time	we	type	a
new	growth	rate	into	cell	C3,	Excel	automatically	recalculates	all	of	our	formulas
without	us	having	to	type	in	a	new	DDS.

What	remains	to	do	is	to	experiment	with	different	values	of	the	growth	rate	until	we
find	one	that	leads	to	416	bears	after	9 years.	Because	we	have	already	made	the
effort	to	set	the	spreadsheet	up	properly,	all	we	need	to	do	is	keep	typing	different
values	into	cell	C3	until	we	get	what	we	want.

First	we	try	 	by	typing	the	value	5%	into	cell	C3.	Note	in	Figure	1.16	that	once
we	press	Enter,	Excel	instantly	recalculates	all	of	the	populations	to	reflect	the
change	in	the	growth	rate.



FIGURE	1.16	Excel	output	automatically	updates	with	change	in	growth	rate.

Cell	B15	tells	us	that	a	5%	growth	rate	would	lead	to	306	bears	in	2002,	and	so	we
must	have	guessed	too	low.	Next	we	try	 .	This	growth	rate	would	produce



465	bears	in	2002,	so	it	is	too	high.	After	a	few	more	tries,	we	arrive	at	the	correct
growth	rate,	about	 .	Depending	on	rounding	there	may	be	some	slight
variation	in	the	value	for	r.	To	contextualize	our	result,	what	we	have	learned	from
our	model	is	that	due	to	conservation	efforts,	the	Yellowstone	grizzly	bear	population
grew	by	an	average	of	about	8.65%	per	year	from	1993	to	2002	rather	than	by	1%	as
was	estimated	in	1993.

For	future	reference	we	mention	another	Excel	shortcut	for	use	with	absolute
addressing.	Recall	that	instead	of	typing	the	address	of	a	cell	into	a	formula,	we	can
just	click	on	the	cell	itself	and	its	address	appears	in	the	formula.	To	get	Excel	to
enter	an	absolute	address	into	the	formula,	press	“F4”	after	clicking	on	the	cell.	This
causes	Excel	to	automatically	add	the	“$’s”	without	us	having	to	type	them.

The	next	example	asks	us	to	use	our	model	to	project	the	effects	of	the	conservation	efforts	into
the	future	and	compare	the	result	with	more	recent	estimates	for	the	grizzly	population.

Example	1.3:

Assuming	that	the	grizzly	population	continued	to	grow	by	8.65%	per	year,	what	would
the	bear	population	be	in	2005?	How	does	that	compare	with	the	estimate	of	over	600
bears	given	in	a	November	15,	2005,	USA	Today	article	(USA	Today,	2005)?

Our	model	with	an	estimated	growth	rate	of	8.65%	predicts	approximately	533	bears	for
2005.	Since	the	USA	Today	article	reported	the	population	to	be	over	600,	we	see	that	the
growth	rate	improved	even	more	and	that	conservation	efforts	continued	to	be	successful.

E.3	Multiple	Formulas

In	this	Excel	section	we	discuss	how	to	work	efficiently	with	multiple	formulas.

To	solve	this	problem	we	need	to	drag	our	formulas	for	the	year	and	population	down
a	few	more	rows	to	get	to	the	year	2005,	or	 .	A	convenient	shortcut	for	doing	so
is	to	first	use	the	thick	cross	pointer	to	select	both	cells	that	contain	formulas,	in	this
case	A15	and	B15.	(Be	careful	not	to	use	the	thin	cross	for	this	since	that	will	copy
the	formula	from	A15	to	B15.)	Next,	we	use	the	thin	cross	to	grab	the	fill	handle	in
the	bottom	right	corner	of	the	highlighted	area	and	drag	it	down	three	more	rows.
Excel	should	copy	and	automatically	update	both	formulas	simultaneously,	and	what
we	should	see	is	shown	in	Figure	1.17.





FIGURE	1.17	Grizzly	population	predictions	1993–2005.

1.1.2	Counting	Yellowstone	Grizzlies
The	population	estimates	that	we	have	used	in	this	section	are	not	easy	to	obtain.	It	might	seem
like	they	ought	to	be,	but	consider	what	counting	an	entire	population	of	bears	entails.	First	of
all,	to	count	bears	directly,	one	must	be	able	to	spot	all	of	the	grizzlies	over	difficult,	forested
terrain;	second,	one	must	be	careful	not	to	count	bears	more	than	once.

The	estimates	given	by	Mattson	and	Gunther	were	produced	through	a	combination	of	direct
counting,	field	observations	about	the	structure	of	grizzly	populations,	and	some	basic
mathematics.	Field	scientists	have	found	that	the	easiest	bears	to	count	are	adult	females	who
have	newborn	cubs.	As	groups	they	are	easier	to	sight	than	single	bears,	and	repeat	counting	is
more	easily	avoided	because	litters	are	unique	in	the	number	and	coloring	of	the	cubs	present.
Since	it	is	also	known	that	adult	female	grizzlies	breed	every	3 years,	the	number	of	females
with	cubs	is	counted	for	a	3-year	period,	thus	ensuring	with	some	reliability	that	all	adult
females	are	counted	exactly	once.	Next,	the	number	of	known	adult	female	deaths	is	subtracted.
Finally,	adult	females	are	known	to	comprise	roughly	27.4%	of	grizzly	populations.
Consequently,	the	net	total	of	adult	females	is	divided	by	0.274	to	get	the	overall	population
number	(Gunther,	2003).

As	an	example	we	look	at	the	specifics	of	how	the	2002	estimate	of	416	was	computed.

Example	1.4:

In	the	year	2000,	there	were	35	adult	females	with	newborn	cubs	sighted;	in	2001,	there
were	42;	and	in	2002,	there	were	50,	bringing	the	3-year	total	to	127.	During	this	same
time	period,	there	were	13	known	deaths	of	adult	females,	so	the	adjusted	total	is	

.	Knowing	that	adult	females	account	for	about	27.4%	of	the	total
population	means	that	 	adult	females.	Dividing	both
sides	of	the	equation	by	0.274	gives	us	our	total:	 .	This
estimate	is	considered	a	minimum	population	estimate	because	of	the	difficulties	in
sighting	bears	mentioned	above.

To	reinforce	what	we	have	discussed	so	far,	we	now	consider	the	case	of	another	endangered
species,	the	California	condor.

1.1.3	California	Condors
In	April	1996,	the	US	Fish	and	Wildlife	Service,	Pacific	Region,	prepared	a	document	entitled
Recovery	Plan	for	the	California	Condor	(Kiff,	Mesta,	&	Wallace,	1996).	Section	G	of	that



document	briefly	reviews	some	of	the	historical	estimates	for	the	size	of	the	condor	population,
and	it	indicates	that	the	population	was	declining	since	at	least	as	far	back	as	the	1930s	or
1940s.	Fred	Sibley	(Sibley,	1969)	determined	that	50–60	condors	were	in	existence	in	the	late
1960s,	while	Sanford	Wilbur	estimated	that	by	1978	the	number	had	dropped	to	25–30
(Wilbur,	1980).	Since	we	would	like	to	deal	in	specifics,	we	assume	conservatively	that	the
population	was	50	in	1968	and	25	in	1978.

Example	1.5:

What	was	the	average	annual	rate	of	decline	for	the	condor	population	from	1968	to
1978?

To	solve	this	problem	we	develop	a	mathematical	model	for	the	situation	like	we	did	for
the	grizzly	population.	We	set	up	our	notation,	develop	a	flow	diagram,	translate	the
diagram	into	an	equation,	and	finally	implement	the	model	with	Excel.	The	notation	for
this	problem	is	the	same	as	we	have	been	using,	but	we	set	it	up	explicitly	for	emphasis:

t = years	since	1968	(the	independent	variable).

P = the	population	of	condors	in	California	(the	dependent	variable).

P(t) = function	notation	for	the	population	of	condors	t	years	after	1968.

P(0) = the	initial	population	of	condors,	so	 .

r = the	annual	rate	of	decline	(presently	an	unknown	parameter).

To	create	the	flow	diagram,	recall	that	we	represent	any	dependent	variable	by	an	oval.
(In	this	case,	there	is	only	one—the	condor	population.)	We	then	represent	any	additions
or	subtractions	to	the	population	by	arrows	leading	in	or	out	of	the	oval	as	appropriate.	In
this	situation,	the	condor	population	is	decreasing,	so	we	draw	an	arrow	leaving	the
population	oval	and	label	it	with	the	(unknown)	amount	of	decrease.	The	result	is	Figure
1.18.

FIGURE	1.18	Flow	diagram	for	condor	population	with	unknown	rate	of	decrease.

Once	we	have	a	carefully	constructed	flow	diagram,	finding	the	DDS	is	relatively
straightforward.	In	this	case,	the	diagram	says	that	to	find	the	condor	population	in	any
year,	we	take	the	previous	year’s	population	and	subtract	r	times	that	value.	Thus,	our



DDS	is	given	by

Until	we	use	Excel	to	find	a	value	for	r,	this	is	as	far	as	we	can	go.

The	setup	we	use	for	our	spreadsheet	is	the	same	as	for	Example	1.2	where	we	stored	the
parameter	r	in	its	own	cell.	Referencing	the	cell	where	r	is	located	with	absolute
addressing	allows	us	to	easily	experiment	with	different	values	for	r.	The	screenshot	in
Figure	1.19	was	taken	just	after	the	formula	for	the	DDS	was	entered	but	before	copying	it
down.	The	rate	of	decline	is	entered	as	10%	as	a	temporary	stand-in	value.

FIGURE	1.19	Condor	population	Excel	model.

Time	in	this	problem	starts	in	1968,	and	we	need	the	population	to	turn	out	to	be	25	in
1978.	In	other	words,	we	need	 .	After	copying	the	year	and	population
formulas	down	to	year	10,	we	experiment	with	different	values	for	r	until	we	find	the
value	that	produces	 .	As	we	see	in	Figure	1.20,	the	correct	value	for	r	is	about
6.6%.



FIGURE	1.20	Condor	rate	of	decline	found	via	trial	and	error.

Our	result	tells	us	that	under	our	model	assumptions	the	population	of	condors	decreased
by	about	6.6%	each	year	from	1968	to	1978.



In	this	section	we	have	studied	two	populations	of	endangered,	or	formerly	endangered,
species.	The	grizzly	bear	population	was	growing	and	the	condor	population	declining,	but
under	our	assumptions	each	was	changing	by	a	fixed	percentage	every	year.	The	models	for
both	populations	can	be	captured	with	the	single	formula:

If	r	is	positive,	we	have	exponential	growth	as	we	did	in	the	case	of	the	grizzlies,	and	if	r	is
negative,	we	have	exponential	decline	as	exhibited	by	the	condors.

1.1.4	Section	Exercises

1.	 Consider	the	flow	diagram	in	Figure	1.21.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	in	year	10.

FIGURE	1.21	Flow	diagram	for	Exercise	.

2.	 Consider	the	flow	diagram	in	Figure	1.22.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	in	year	10.



FIGURE	1.22	Flow	diagram	for	Exercise	.

3.	 Consider	the	flow	diagram	in	Figure	1.23.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	in	year	10.

FIGURE	1.23	Flow	diagram	for	Exercise	.

4.	 Consider	the	flow	diagram	in	Figure	1.24.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	in	year	10.



FIGURE	1.24	Flow	diagram	for	Exercise	.

5.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:

6.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:

7.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:

8.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:

9.	 Give	the	flow	diagram	and	corresponding	DDS	for	a	grizzly	population	that	is	growing	by
8%	per	year	and	has	five	bears	illegally	poached	annually.

10.	 Give	the	flow	diagram	and	corresponding	DDS	for	a	population	that	has	a	birth	rate	of	5%
per	year	and	a	death	rate	of	2%	per	year.

11.	 Suppose	you	know	that	the	DDS	for	a	population	is	given	by

a.	 Draw	a	flow	diagram	that	would	lead	to	this	DDS.

b.	 Explain	in	a	complete	sentence	how	the	population	is	changing	from	year	to	year.

12.	 In	Example	1.2	based	on	an	initial	population	estimate	of	197	Yellowstone	grizzlies	in
1993	and	a	later	estimate	of	416	Yellowstone	grizzlies	in	2002,	we	found	that	the
population	grew	by	about	8.65%	per	year.



a.	 Using	the	8.65%	growth	rate,	what	would	the	exponential	model	predict	for	the	grizzly
population	in	the	year	2193?

b.	 What	does	your	answer	in	part	a	say	about	the	long-term	validity	of	the	exponential
growth	model	for	the	grizzly	population?

13.	 Suppose	that	the	1993	Grizzly	Bear	Recovery	Plan	had	never	been	implemented	and	that
the	1993	estimate	of	a	1%	growth	rate	continued	to	hold.	How	long	would	it	have	taken	for
the	population	to	reach	416	bears?

14.	 Based	on	the	1993	estimate	of	197	for	the	total	population	of	Yellowstone	grizzlies,	how
many	adult	females	were	there	in	1993?

15.	 Suppose	that	the	numbers	of	adult	females	with	cubs	sighted	in	Yellowstone	were	52	in
2003,	60	in	2004,	and	65	in	2005.	Estimate	the	total	grizzly	population	in	2005.

16.	 Suppose	that	the	goal	of	the	National	Park	Service	is	for	the	Yellowstone	grizzly
population	to	reach	1000	bears	by	the	year	2020.	Are	the	current	conservation	efforts
sufficient	to	reach	this	goal?	Explain	how	you	arrived	at	your	conclusion.

17.	 Table	1.2	contains	more	population	data	for	the	wild	California	condor	population	from	the
1996	Recovery	Plan	for	the	California	Condor	(US	Fish	and	Wildlife	Service,	1996).

a.	 Compare	the	population	values	in	the	table	to	what	our	model	would	predict	using	the
rate	of	decline	found	in	Example	1.5	and	an	initial	population	of	50	condors.	In
general,	how	well	did	our	model	do?

b.	 Can	you	think	of	possible	reasons	for	any	discrepancies?

TABLE	1.2	The	Number	of	California	Condors	Remaining	in	the	Wild	between	1982
and	1985	(US	Fish	and	Wildlife	Service,	1996)

Year Number	Wild	California	Condors
1982 21
1983 19
1984 15
1985 9

18.	 Based	on	the	Table	1.2,	what	value	for	r	would	give	the	best	predictions	for	the	condor
population?	Explain	precisely	how	you	made	your	determination.

19.	 Recall	that	our	estimate	for	the	California	condor’s	rate	of	decline	was	based	on	the	lower
population	estimates	given	by	Sibley,	Mailed,	and	Wilbur.	Reestimate	the	rate	of	decline
from	1968	to	1978	using	three	other	combinations	from	the	population	estimates:

a.	 The	lower	value	from	1960s	and	the	higher	value	from	1978.

b.	 The	higher	value	from	1960s	and	the	lower	value	from	1978.

c.	 The	higher	value	from	1960s	and	the	higher	value	from	1978.



d.	 How	much	difference	do	you	see	in	r?

20.	 Extension:	The	models	in	this	chapter	used	a	single	growth	rate,	r,	to	describe	the	change
in	a	population	from	1 year	to	the	next.	This	growth	rate	represents	a	combination	of	all
factors	influencing	the	population	including	births	and	deaths.	In	some	situations	it	is	more
useful	to	include	separate	parameters	for	the	population’s	birth	rate	and	death	rate.

a.	 Give	the	flow	diagram	that	represents	the	annual	change	in	a	population	if	b	is	the
annual	birth	rate	and	d	is	the	annual	death	rate.

b.	 Find	the	DDS	for	the	new	model.

c.	 Implement	the	new	model	in	Excel.

d.	 Find	the	population	in	year	30	for	a	population	that	starts	at	100,	has	a	birth	rate	of	5%,
and	has	a	death	rate	of	3%.

1.2	EXPONENTIAL	GROWTH	WITH	STOCKING	OR
HARVESTING
Whether	intentionally	or	unintentionally,	humans	often	have	an	impact	on	wildlife	populations.
In	this	section	we	look	at	intentional	influence,	and	we	see	how	to	incorporate	the	effects	of
such	influence	into	our	population	models	from	the	previous	section.	The	two	types	of
influence	we	investigate	here	are	harvesting,	the	systematic	removal	of	members	from	a
population,	and	stocking,	the	systematic	addition	of	members	to	a	population.

1.2.1	Stocking	Mississippi	Sandhill	Cranes
Based	on	data	presented	in	Mississippi	Sandhill	Cranes	(Gee	&	Hereford,	1993)	and
Recovery	Plan:	Mississippi	Sandhill	Crane	(Valentine	&	Lohoefener,	1991),	the	Mississippi
sandhill	crane	population	was	50	in	1980	and	was	declining	at	an	average	rate	of
approximately	6%	per	year.

Example	1.6:

Based	on	these	estimates,	when	would	the	crane	population	become	extinct	without	some
kind	of	intervention?

At	the	moment	there	is	nothing	new	for	us	in	this	problem;	we	just	have	a	population	that
is	declining	exponentially.	First	we	create	a	flow	diagram,	shown	in	Figure	1.25,	and
from	the	diagram	we	formulate	our	DDS.



FIGURE	1.25	Flow	diagram	for	sandhill	crane	population.

The	arrow	leaving	the	population	indicates	a	subtraction	so	our	DDS	is	given	by

Now	that	we	have	the	DDS,	we	set	up	an	Excel	spreadsheet	to	handle	the	calculations.	As
is	our	custom,	we	store	all	parameters	in	their	own	cells	and	refer	to	them	using	absolute
addressing.	This	takes	a	little	longer	to	set	up	in	the	beginning,	but	if	we	need	to	change
any	of	our	values	later,	it	will	keep	us	from	having	to	redo	the	entire	worksheet.	Figure
1.26	shows	a	screenshot	of	our	sandhill	crane	spreadsheet	with	the	first	population
formula	displayed.



FIGURE	1.26	Sandhill	crane	population	Excel	model.

Before	proceeding	we	need	to	decide	when	to	consider	the	population	extinct.	Of	course
we	know	that	if	the	population	falls	to	zero,	then	we	have	an	extinct	population;	however,
an	exponential	model	will	never	actually	produce	a	population	of	exactly	zero.	A
reasonable	way	around	this	is	to	declare	the	population	extinct	once	it	drops	below	1 
crane.	Now	the	solution	to	our	problem	involves	copying	the	formula	for	our	model	down
while	looking	for	the	first	year	where	the	population	falls	below	one.	Doing	so	reveals	the
prediction	that	it	would	take	about	65 years	for	the	population	to	become	extinct.

In	1973	the	Mississippi	sandhill	crane	was	added	to	the	US	List	of	Endangered	Fish	and
Wildlife,	and	in	1975	the	Mississippi	Sandhill	Crane	National	Wildlife	Refuge	was
established	(US	Fish	and	Wildlife	Service,	2011).	Stocking	efforts	began	at	the	Patuxent



Wildlife	Research	Center	in	1965	and	involved	a	program	of	hacking:	removing	eggs	from	the
wild	for	chicks	to	be	captive-reared	and	then	released	back	into	the	population	(US	Fish	and
Wildlife	Service,	2011).	By	1980	there	were	enough	captive-reared	cranes	to	begin	stocking,
and	in	1981,	the	first	cohort	of	captive-reared	cranes	was	released	into	the	wild	population
(Gee	&	Hereford,	1993).	Stocking	efforts	have	continued	ever	since	in	what	is	now	the	largest
crane	release	program	in	the	world.	The	history	of	the	development	of	the	stocking	effort	is	an
interesting	one;	the	brief	description	below	is	from	Gee	and	Hereford	(Gee	&	Hereford,
1993).

The	first	releases	of	hand-reared	birds	failed.	Thus,	releases	of	Mississippi	sandhills	on	the
refuge	during	the	1980s	were	birds	raised	by	their	parents	or	surrogate	parents.	These
parent-reared	birds	proved	wilder	than	the	hand-reared	birds	and	adapted	well	to	the	pine
savanna.	Unfortunately,	the	parent-rearing	technique	reduced	production	and	increased
expenses.

The	PWRC	developed	a	new	hand-rearing	technique	that	visually	isolated	chicks	from
humans	and	imprinted	them	on	adult	sandhill	cranes	in	the	chick-rearing	area.	Caretakers
dressed	in	sheets	to	hide	their	human	form	when	handling	birds,	and	encounters	with	cranes
were	limited.	Juveniles	were	placed	in	socialization	pens	in	the	fall	to	form	three	cohorts
(parent-reared,	hand-reared,	and	a	mixed	group).	A	gentle	release	on	the	refuge	allowed	the
birds	to	leave	the	release	pen	when	ready	and	to	return	for	food	for	a	period	after	release.
Surprisingly,	a	greater	percentage	of	hand-reared	birds	has	survived	than	the	parent-reared
birds,	although	both	groups	have	paired	and	produced	fertile	eggs.

There	were	9 cranes	in	the	original	release	of	captive-reared	birds.	Our	next	problem	asks	us
to	determine	the	effect	that	continuing	to	add	9 cranes	every	year	would	have	on	the	population.
For	now	we	assume	the	same	annual	rate	of	decline	of	6%.

Example	1.7:

Predict	what	the	population	of	cranes	would	be	in	1993	if	9 cranes	were	introduced	into
the	population	every	year.

We	must	first	realize	that	this	situation	calls	for	a	fundamentally	different	kind	of	model,
one	that	incorporates	a	constant	influx	of	cranes	each	year.	We	assume	the	original	6%
rate	of	decline.	We	also	have	9 birds	being	added	each	year,	and	we	account	for	this	in	the
flow	diagram	as	an	arrow	pointing	into	the	population	oval.	The	result	is	the	flow	diagram
given	in	Figure	1.27.

To	translate	the	diagram	into	a	DDS,	we	must	keep	in	mind	what	it	is	telling	us.	The
diagram	says	that	to	calculate	the	population	in	1 year,	we	must	start	with	the	previous
year’s	population,	subtract	6%	from	it,	and	add	9	to	it.	Thus,	our	new	DDS	is



FIGURE	1.27	Flow	diagram	for	sandhill	crane	population	with	hacking.

Now	we	must	implement	our	model	in	Excel.	Looking	ahead	to	the	possibility	of	wanting
to	change	the	number	of	cranes	introduced	each	year,	we	store	the	number	9	in	its	own	cell
and	refer	to	it	with	absolute	referencing.	The	new	model,	with	the	formula	already	typed
in,	is	shown	in	Figure	1.28.

FIGURE	1.28	Sandhill	crane	population	Excel	model	with	hacking.



To	complete	the	problem,	we	now	have	to	copy	our	formula	down	to	year	13	and	report
the	result.	After	doing	so	we	see	that	the	model	predicts	about	105 cranes	in	1993.

Our	initial	model	predicts	a	population	of	105 cranes	in	1993,	but	the	reintroduction	program
actually	raised	the	total	population	to	135	(Gee	&	Hereford,	1993).	This	better-than-predicted
increase	could	be	due	to	several	factors,	including	better	survivorship	of	cranes	(both	captive-
reared	and	wild),	or	the	addition	of	more	than	an	average	of	9 cranes	per	year.	We	assume	for
now	that	the	only	relevant	factor	is	the	average	addition	of	more	than	9 cranes	every	year.	Our
next	problem	is	to	determine	how	many	cranes	per	year	were	necessary	to	achieve	135	in
1993.

Example	1.8:

Determine	approximately	how	many	cranes	on	average	were	captive-reared	and	released
annually	between	1981	and	1993.

We	do	not	yet	know	how	many	birds	were	introduced,	so	we	will	use	the	letter	“a”	to
denote	this	unknown	parameter.	Figure	1.29	is	the	modified	flow	diagram	for	this
scenario.

FIGURE	1.29	Flow	diagram	for	sandhill	crane	population	with	unknown	hacking	number.

Translating	the	diagram	into	a	DDS	yields

We	now	take	advantage	of	our	foresight	in	storing	the	number	of	captive-released	birds	as
a	parameter.	Allowing	Excel	to	automatically	recalculate	the	worksheet	each	time,	we	try
different	values	for	a	until	the	1993	population	is	at	least	135.	It	may	take	a	few	tries	to
find	the	right	number,	but	we	should	end	up	with	needing	to	introduce	an	average	of	about
12.23 cranes	per	year.	Since	we	are	looking	for	an	average	value,	keeping	the	decimal
number	is	fine.	However,	if	we	insist	on	introducing	the	same	number	of	birds	each	year,
we	should	round	up	to	13	to	make	sure	we	do	not	fall	short	of	the	goal	of	135.



The	previous	example	examined	a	population	in	decline	that	was	assisted	by	systematic
stocking.	Next	we	introduce	an	example	of	what	can	be	considered	the	opposite	problem—a
population	that	is	growing	exponentially	and	requires	systematic	harvesting	to	keep	it	from
growing	too	large.

1.2.2	Harvesting	White-Tailed	Deer	in	the	Northeast
In	the	early	1900s,	the	population	of	white-tailed	deer	had	nearly	vanished	in	the	United	States.
Since	then	their	numbers	have	increased	to	the	point	of	overpopulation,	and	they	have	become
a	serious	problem	for	foresters	and	farmers	(Palmer	&	Storm,	1995).	This	overabundance	has
been	caused	in	part	by	the	extirpation	of	natural	predators	such	as	wolves	and	mountain	lions
(McCullough,	1997).	Also	contributing	to	deer	overpopulation	is	the	artificial	confinement	of
populations	due	to	barrier	fences	and	development	(McCullough,	1997).	An	increase	in	mixed-
use	land	combined	with	the	increase	in	the	deer	population	has	led	to	increases	in	crop
damage,	forest	damage,	and	deer–vehicle	collisions	(Palmer	&	Storm,	1995).	Deer
management,	including	the	harvesting,	or	culling,	of	deer,	is	seen	by	many	as	an	essential	part
of	stabilizing	deer	populations	and	minimizing	harmful	interactions	between	deer	and	humans.
One	of	the	important	questions,	then,	is,	how	many	deer	should	be	harvested	in	a	particular
area	every	year	to	maintain	the	population	at	a	level	that	is	healthy	for	all	concerned?

It	should	be	noted	that	not	all	agree	with	either	the	moral	or	scientific	basis	for	the	use	of
hunting	as	a	method	for	controlling	deer	populations.	Allen	Rutberg	writes	(Rutberg,	1997):

The	scientific	arguments	in	favor	of	deer	management	are	commonly	founded	more	on
dogma	than	on	data	and	more	on	intuition	than	on	logic.

In	spite	of	repeated	assertions	of	the	fundamental	dogmas	and	their	corollary—sport	hunting
is	necessary	to	prevent	deer	overpopulation—scientific	tests	are	rare	enough	and
counterexamples	are	common	enough	to	raise	doubts	in	the	minds	of	both	scientists	and
thoughtful	laypersons.	The	exponential	rise	in	white-tailed	deer	populations	in	the	United
States	during	the	last	two	decades	makes	a	strong	case	that	sport	hunting	has	not	controlled
deer	populations.

Hunting,	as	commonly	practiced,	may	have	profound	effects	on	the	age	and	sex	structure	of
deer	populations.	Sport	hunter	preferences	for	shooting	bucks	skew	sex	ratios	toward
females,	sometimes	dramatically.	This	problem	has	been	widely	recognized	in	the
management	community,	though	principally	as	a	concern	for	population	productivity	and
hunter	satisfaction,	and	some	state	wildlife	agencies	are	acting	to	reduce	the	more	extreme
biases.	However,	less	concern	is	shown	about	the	population,	behavioral,	and	genetic
effects	of	heavy,	early	adult	mortality.

Still,	according	to	the	National	Biological	Service,	harvesting	has	been	an	effective	tool	in
managing	deer	populations	in	states	such	as	Pennsylvania	that	harvest	considerably	more
female	than	male	deer.	In	states	such	as	Massachusetts,	however,	where	many	more	male	than
female	deer	are	harvested,	the	deer	population	has	continued	to	increase	(Palmer	&	Storm,
1995).	The	fact	that	the	male/female	harvesting	ratio	plays	such	an	important	role	indicates



that,	once	we	understand	the	basic	harvesting	model,	it	would	be	worthwhile	to	consider	a
more	sophisticated	model	that	accounts	for	sex	differences.	For	now,	though,	we	will	not	make
such	a	distinction.

Reliable	estimates	of	growth	rates	are	sometimes	difficult	to	find.	Occasionally	we	have	to
deduce	the	growth	rate	from	the	data	that	is	available.	According	to	Curtis	and	Sullivan,	given
a	favorable	environment,	deer	populations	can	double	in	as	little	as	2	or	3 years	(Curtis	&
Sullivan,	2001).	This	is	a	common	way	of	describing	growth	rates	called	the	doubling	time,
and	it	is	generally	considered	a	more	intuitive	way	of	understanding	growth.	We	will	be
conservative	and	assume	that	the	deer	population	doubles	every	3 years,	and	in	the	next
problem	we	use	Excel	to	help	us	translate	this	information	into	an	estimate	for	the	annual
growth	rate	of	white-tailed	deer.

Example	1.9:

Assuming	that	a	white-tailed	deer	population	without	harvesting	will	double	every	3 
years,	find	the	equivalent	annual	growth	rate.

We	are	assuming	that	the	population	grows	by	a	constant	percentage	each	year;	we	just	do
not	yet	know	what	the	percentage	is.	This	puts	us	in	a	situation	we	have	seen	before—
exponential	growth	with	an	unknown	growth	rate	parameter,	r.	We	know	the	DDS	for	the
situation	is	given	by	 .	As	before	we	estimate	the	unknown
growth	rate	parameter	using	trial	and	error	in	Excel.	The	difference	is	that	this	time	we	do
not	have	an	initial	population	to	start	with.	The	good	news	is	that	the	growth	rate	we	find
will	not	depend	on	the	starting	population	so	we	can	use	any	value	we	like.

If	we	start	with	a	million	deer,	for	example,	we	have	 .	If	the	population
doubles	every	3 years,	then	we	must	have	 .	Our	job	is	to	find	a	value	for
r	that	produces	 .	Storing	the	growth	rate	in	its	own	cell	and	referring	to
it	with	absolute	addressing,	we	experiment	with	different	rates	until	we	find	the	one	we
need.	Figure	1.30	shows	a	spreadsheet	setup	for	this	purpose.



FIGURE	1.30	White-tailed	deer	population	Excel	model	with	unknown	growth	rate.

We	type	different	growth	rates	into	cell	C3	until	cell	B9	equals	2,000,000.	If	we	do	not
want	to	go	out	to	three	or	four	decimal	places,	the	closest	we	can	get	is	 	or	

.	So	based	on	the	Curtis	and	Sullivan	estimate,	a	reasonable	and	fairly
conservative	growth	rate	for	an	unmanaged	deer	population	is	around	26%	per	year.	It	is
worth	taking	a	moment	or	two	to	try	different	values	in	cell	B6	to	verify	that	the	initial
population	does	not	affect	our	answer.

With	a	growth	rate	at	26%	or	even	higher,	an	unmanaged	deer	population	can	quickly	become	a
serious	problem.	A	natural	question,	then,	is,	how	many	deer	should	be	harvested	each	year	to
keep	the	population	from	becoming	too	large?	At	a	more	practical	level,	this	question	leads	to
issues	such	as	how	many	hunting	licenses	should	be	issued	and	how	long	the	hunting	season
should	be.	The	definition	of	“too	large”	will	vary	depending	on	the	point	of	view	of	the	person
being	asked	and	on	the	particular	needs	of	a	state	or	region.	For	now	we	concentrate	on
harvesting	enough	deer	so	that	the	population	stops	increasing.

Our	harvesting	strategy	is	to	harvest	the	same	number	of	deer	every	year,	and	we	investigate
this	scenario	in	the	next	example.	For	our	initial	population,	we	use	the	1992	estimate	of



3,000,000	deer	in	the	Northeast	given	by	Palmer	and	Storm	(Palmer	&	Storm,	1995).
Assuming	a	growth	rate	of	 ,	we	answer	the	following.

Example	1.10:

Determine	the	minimum	number	of	deer	that	should	be	harvested	in	the	Northeast	each
year	in	order	to	prevent	the	population	from	growing.

We	need	to	build	a	mathematical	model	for	the	situation,	and	the	first	step	in	the	process	is
to	construct	our	flow	diagram.	We	have	an	annual	increase	of	26%	and	an	annual	decrease
due	to	harvesting	that	is	constant	but	unknown.	The	diagram	is	similar	to	the	one	for	the
sandhill	crane	stocking	example,	and	it	appears	in	Figure	1.31.

FIGURE	1.31	Flow	diagram	for	deer	population	with	harvesting.

We	once	again	use	the	letter	“a”	to	stand	for	the	unknown	harvest	number.	Once	we	have
the	flow	diagram	constructed,	we	can	immediately	write	down	the	DDS:

To	implement	the	model	in	Excel,	we	once	again	take	the	trouble	to	store	all	of	our
parameters	in	their	own	cells	so	that	the	spreadsheet	will	be	as	flexible	as	possible.	We
show	the	setup	of	our	spreadsheet	in	Figure	1.32	with	an	arbitrary	number	initially	chosen
for	a.



FIGURE	1.32	Deer	population	Excel	model	with	harvesting.

Once	the	setup	is	complete,	we	drag	our	formula	down	a	few	years	and	experiment	with
different	harvest	numbers	until	the	population	no	longer	increases.	We	find	that	we	must
harvest	at	least	 	deer	each	year	in	order	to	prevent	the	population	from
increasing.

The	actual	number	of	deer	harvested	in	the	Northeast	in	1992	is	estimated	to	be	900,000
(Palmer	&	Storm,	1995).	Thus,	even	this	initial,	relatively	simple	model	has	produced	a
result	that	compares	reasonably	well	with	reality.	Unfortunately,	the	constant	harvest
approach	that	we	have	outlined	above	does	have	serious	drawbacks.	Some	of	these	are
investigated	in	the	exercises.

In	this	section	we	have	taken	our	basic	exponential	model	and	added	a	component	that	takes
into	account	possible	human	management	of	a	population	by	harvesting	or	stocking.	This
additional	component	adds	some	measure	of	realism	to	our	model,	but	it	also	adds	some
complexity.	This	is,	unfortunately,	the	usual	state	of	affairs	in	modeling:	additional	realism
nearly	always	carries	the	price	of	extra	complication.

As	was	the	case	for	our	exponential	models,	we	can	describe	both	of	the	cases	presented	in
this	section	with	a	single	DDS,	namely,



Models	that	have	this	general	form	are	sometimes	described	as	affine	models.	We	describe
populations	that	on	their	own	would	grow	or	decline	by	a	fixed	percentage	each	year	by
choosing	r	to	be	positive	or	negative,	respectively.	Similarly,	we	account	for	either	stocking	or
harvesting	by	letting	a	be	positive	or	negative,	respectively.	Note	also	that	this	DDS	includes
the	basic	exponential	model	as	the	special	case	where	 .

1.2.3	Section	Exercises

1.	 Consider	the	flow	diagram	in	Figure	1.33.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	after	15 years.

FIGURE	1.33	Flow	diagram	for	Exercise	.

2.	 Consider	the	flow	diagram	in	Figure	1.34.

a.	 Find	the	corresponding	DDS.

b.	 Use	a	calculator	to	predict	the	population	after	2 years	if	 .

c.	 Use	Excel	to	project	the	population	after	15 years.

FIGURE	1.34	Flow	diagram	for	Exercise	.

3.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:



4.	 Draw	a	flow	diagram	that	corresponds	to	the	following	DDS:

5.	 Extension:	In	Example	1.8	we	determined	that	an	average	of	12.23	Mississippi	sandhill
cranes	were	captive-reared	and	released	annually	between	1981	and	1993.	Table	1.3	gives
the	actual	numbers,	taken	from	table	2	in	Valentine	and	Lohoefener	(1991),	for	the	years
1981–1990.

a.	 How	does	12.23	compare	to	the	average	number	of	cranes	that	were	actually	released?

b.	 What	factor(s)	might	account	for	the	difference?

c.	 Using	a	rate	of	decline	of	6%,	and	the	actual	release	values	from	1981	to	1990,
estimate	how	many	cranes	there	were	in	1990.	(Note:	this	exercise	will	require	a
significant	modification	of	the	crane	Excel	spreadsheet.)

d.	 Determine,	on	average,	how	many	cranes	must	have	been	released	in	1991,	1992,	and
1993	in	order	to	end	up	with	135 cranes	in	1993.

TABLE	1.3	The	Number	of	Mississippi	Sandhill	Cranes	Captive-Reared	and	Released
between	1981	and	1990	(Valentine	&	Lohoefener,	1991)

Year	of	Release Number	Captive-Released
1981 9
1982 4
1983 8
1984 4
1985 10
1986 7
1987 2
1988 10
1989 13
1990 29

6.	 Regarding	white-tailed	deer,	recall	the	Curtis	and	Sullivan	(2001)	estimate	that	deer
populations	can	double	every	2–3	years.	In	Examples	1.9	and	1.10,	we	based	our	Excel
work	on	a	doubling	time	of	3 years.

a.	 Rework	Examples	1.9	and	1.10	in	the	text,	this	time	assuming	a	doubling	time	of	2 
years.

b.	 How	does	the	new	harvesting	number	compare	to	the	previous	estimate	of	780,000?



c.	 Explain	why	the	answer	for	b	makes	sense	in	the	context	of	the	problem.

7.	 When	deciding	on	a	real	harvesting	strategy,	it	is	not	just	the	total	number	harvested	that	is
important.	Rather,	the	sex	ratio	of	the	harvest	number	is	also	very	important.	In	fact,	Palmer
and	Storm	write,	“During	the	past	decade,	deer	populations	in	the	Northeast	have	continued
to	increase	except	in	states	that	harvested	markedly	more	antlerless	than	antlered	deer”
(Palmer	&	Storm,	1995).	In	a	sentence	or	two,	discuss	why	the	sex	ratio	of	deer	harvests
should	play	such	an	important	role	in	controlling	deer	populations.

8.	 Extension:	Consider	a	deer	population	model	with	harvesting	where	we	would	like	to
project	the	population	of	males	and	the	population	of	females	over	time.	What	kinds	of	new
information	would	we	need	for	such	a	model?	What	would	a	flow	diagram	look	like?

1.3	TWO	FUNDAMENTAL	EXCEL	TECHNIQUES
In	this	section	we	take	a	look	at	some	basic	and	powerful	tools	for	visualizing	our	models	and
for	finding	unknown	parameters.	We	begin	by	learning	how	to	produce	basic	graphs	in	Excel.

E.4	Graphing	in	Excel
We	can	often	glean	valuable	information	from	a	model	by	visualizing	it	using	a	graph,	and
Excel	makes	creating	graphs	relatively	easy.	It	takes	some	time	and	practice	to	learn	how
to	use	all	of	the	many	options	available	to	us,	but	to	create	a	basic,	no-frills	graph,	the
process	only	takes	a	few	moments.	The	steps	are:

1.	 Use	the	thick	cross	pointer	to	select	all	of	the	output	we	want	to	graph,	including	the
column	headings.

2.	 From	the	Charts	group	under	the	Insert	tab,	select	“Insert	Scatter	(X,Y)	or	Bubble
Chart”	(the	bottom	right	drop-down).

3.	 Select	the	particular	type	of	graph	desired,	often	“Scatter	with	Straight	Lines	and
Markers.”

Excel	will	automatically	choose	the	title	and	scale	for	each	axis	based	on	the	information
selected.	When	the	graph	is	selected,	the	Chart	Tools	group	becomes	active,	with	tabs	for
Design	and	Format.	Just	about	any	formatting	change	can	be	made	from	these	two	tabs.	In
particular,	the	Add	Chart	Element	group	under	the	Design	tab	provides	many	of	the	most
common	options,	including	customizing	the	axes,	axis	labels,	and	legend.	We	illustrate	the
creation	of	a	basic	graph	with	the	following	example.

Example	1.11:

Graph	the	grizzly	bear	population	for	the	years	1993–2002.	Recall	that	the	initial



population	was	197	in	1993	with	an	annual	estimated	growth	rate	of	1%.

Step	one	is	to	use	the	thick	cross	pointer	to	select	all	of	the	output	that	should	appear
on	the	graph,	including	the	column	headings.	We	are	interested	in	seeing	how	the
population	changes	over	time,	so	our	selection	should	include	both	the	column	for
time	and	the	column	for	population,	as	well	as	the	column	headings	for	each.	Figure
1.35	shows	the	result	of	our	selection	just	before	clicking	on	the	type	of	scatter	graph
we	want,	in	this	case	“Straight	Lines	with	Markers.”

FIGURE	1.35	Creating	graphs	in	Excel.

After	clicking	the	graph	type	the	graph	will	appear	in	the	worksheet.	The	graph	by
itself	appears	in	Figure	1.36.



FIGURE	1.36	Completed	Excel	graph	for	grizzly	population.

Note	what	Excel	has	done.	The	time	values	have	automatically	been	placed	on	the
horizontal,	or	X-axis,	and	the	values	for	population	have	been	placed	on	the	vertical,
or	Y-axis.	The	title	has	been	automatically	created	using	our	column	heading
“Population.”	Excel	creates	a	graph	just	as	we	would	by	hand—by	plotting	points
and	then	connecting	the	dots—but	Excel	is,	of	course,	much	better	at	it.

We	do	a	second	example	to	reinforce	our	understanding.

Example	1.12:

Assuming	that	the	original	conditions	in	Example	1.8	hold	all	the	way	to	2015,	graph	the
Mississippi	sandhill	crane	population	for	the	years	1980–2015.	What	can	you	say	about
the	population	trend	based	on	the	graph?

We	open	our	sandhill	crane	spreadsheet,	which	should	already	be	set	up	correctly.	We
still	assume	an	annual	rate	of	decline	of	6%	per	year	and	an	initial	population	of	50	in
1980.	For	the	number	being	added	each	year,	we	use	the	value	from	Example	1.8,	namely,	

	cranes	per	year.	The	first	thing	we	have	to	do	is	drag	our	formulas	down	a	few
more	rows	until	we	get	to	the	year	2015,	that	is,	until	 .	Once	we	do	that,	we	follow
the	basic	steps	for	graphing:

1.	 Select	the	output	to	be	graphed	including	column	headings.

2.	 Select	the	Chart	group	from	the	Insert	tab.

3.	 Select	the	desired	type	of	graph.



For	step	1,	remember	to	use	the	thick	cross	to	select	all	of	the	data	you	want	to	graph
including	the	column	headings.	We	should	end	up	with	the	graph	given	in	Figure	1.37.

FIGURE	1.37	Completed	Excel	graph	for	crane	population.

Here	we	have	taken	advantage	of	the	features	in	the	Add	Chart	Element	group	under	the
Design	tab	and	added	descriptive	axis	labels	to	the	graph.	Labeling	axes	clearly	is	a	good
habit	to	get	into.	Doing	so	allows	someone	unfamiliar	with	the	problem	to	still	understand
the	graph,	and	it	can	serve	as	a	refresher	if	one	has	not	looked	at	the	graph	in	a	while.

The	graph	shows	that	the	crane	population	continues	to	increase	over	the	years,	but	the
downward	bend	in	the	graph	indicates	that	this	increase	is	slowing	down	over	time.	We
could	have	discovered	this	feature	of	the	population	by	carefully	examining	the	numerical
output	in	the	population	column,	but	this	is	an	example	of	something	that	a	graph	allows	us
to	see	easily	that	numerical	investigations	would	not.

A	nice	feature	of	Excel	graphs	is	that	they	automatically	update	when	we	change	the	value	of	a
relevant	parameter.	Try	changing	the	number	of	cranes	added	each	year	and	watch	what
happens	to	the	graph.



E.5	Goal	Seek
Up	until	now	we	have	concentrated	on	using	Excel	to	solve	a	variety	of	population
problems	numerically.	When	faced	with	finding	an	unknown	parameter	such	as	a	growth
rate,	our	method	has	been	to	store	the	parameter	in	its	own	cell,	refer	to	it	with	absolute
referencing,	and	try	different	parameter	values	until	we	find	the	right	one.	It	would	be	nice
if	we	could	find	the	correct	parameter	value	without	the	tedium	of	the	guess	and	check
method,	and	fortunately	Excel	has	the	capability	to	do	this	for	us	in	a	couple	of	different
ways.	The	method	we	introduce	now	is	to	use	an	Excel	feature	called	Goal	Seek.	We
show	how	Goal	Seek	works	by	revisiting	Example	1.2.

Example	1.13:

Recall	that	the	population	of	grizzlies	was	197	in	1993	and	416	in	2002.	Use	Goal	Seek	to
determine	an	estimate	for	the	growth	rate	of	the	Yellowstone	grizzly	population	from	1993
to	2002.

We	start	by	opening	the	spreadsheet	we	used	to	solve	the	original	problem.	Recall
that	we	have	stored	the	unknown	growth	rate	as	a	parameter	in	its	own	cell	and
referred	to	it	using	absolute	referencing	so	that	Excel	will	not	automatically	update
the	cell	address.	Instead	of	using	trial	and	error	to	find	the	growth	rate	that	produces	

,	we	use	the	Goal	Seek	feature	of	Excel	to	find	the	rate.

First	we	select	the	Data	tab.	From	the	Data	Tools	group,	we	select	the	What-If
Analysis	pull-down	menu	and	select	Goal	Seek	as	shown	in	Figure	1.38.

FIGURE	1.38	Locating	Goal	Seek	in	Excel.



Once	we	click	on	Goal	Seek,	the	dialog	box	pictured	in	Figure	1.39	appears.

FIGURE	1.39	The	Goal	Seek	dialog	box.

The	default	address	in	the	“Set	cell”	box	is	the	cell	that	happens	to	be	selected	in	the
worksheet	when	the	Goal	Seek	tool	is	opened.	We	have	three	values	to	enter	in	the
dialog	box:

1.	 In	the	“Set	cell”	box,	we	type	the	cell	address	where	our	target	value	resides.	For
this	example	we	enter	B15	since	that	is	where	the	goal	population	for	2002
resides.

2.	 In	the	“To	value”	box,	we	type	in	our	goal	for	cell	B15.	In	this	case,	we	want	it	to
be	416,	so	we	type	in	416.

3.	 In	the	“By	changing	cell”	box,	we	enter	the	cell	address	of	the	parameter	whose
value	we	need	to	change	in	order	to	achieve	our	goal.	In	this	case,	the	parameter
is	the	growth	rate,	and	it	lives	in	cell	C3.

After	we	enter	this	information,	the	Goal	Seek	box	should	appear	as	it	does	in	Figure
1.40.



FIGURE	1.40	Filled-in	Goal	Seek	dialog	box	for	Example	1.13.

It	may	help	to	interpret	the	Goal	Seek	box	as	a	complete	sentence.	What	we	are
saying	in	the	Goal	Seek	box	is	“Set	cell	B15	to	value	416	by	changing	cell	C3,”	or
equivalently,	“Make	cell	B15	equal	416	by	varying	cell	C3.”	A	third	and	more
concrete	version	would	be,	“Arrange	for	the	grizzly	population	to	be	416	in	2002	by
finding	the	right	growth	rate.”

Once	we	click	OK,	Excel	instantly	finds	the	growth	rate	that	causes	our	model	to
produce	416	grizzlies	in	2002.	The	result	is	seen	in	Figure	1.41.



FIGURE	1.41	The	result	of	a	successful	Goal	Seek	for	Example	1.13.

The	“Goal	Seek	Status”	box	that	appears	verifies	that	Goal	Seek	was	successful.	Just
click	OK	to	go	on.	Note	that	cells	C3	and	B15	have	automatically	been	changed	to
reflect	the	assigned	population	goal	and	the	growth	rate	required	to	produce	it.	Also
note	that	the	value	 	agrees	with	the	value	 	that	we	originally
found	using	trial	and	error.	The	slight	difference	is	due	to	Excel	keeping	more
decimal	places	in	the	value	for	the	goal.	

Next	we	rework	another	problem	to	make	sure	we	know	how	to	use	the	Goal	Seek	command.

Example	1.14:

Use	Goal	Seek	to	rework	Example	1.5	where	we	were	asked	to	find	the	annual	rate	of
decline	for	a	condor	population	that	was	50	in	1968	and	25	in	1978.

Since	we	are	returning	to	a	previous	problem,	there	is	no	need	to	go	through	the	setup	of



the	flow	diagram	and	DDS	again.	All	that	is	necessary	is	to	use	Goal	Seek	on	the
spreadsheet	we	created	for	the	problem	instead	of	trial	and	error.	Figure	1.42	shows	the
Goal	Seek	dialog	box	correctly	filled	in.

FIGURE	1.42	Filled-in	Goal	Seek	dialog	box	for	Example	1.14.

Once	we	click	okay,	we	should	see	both	the	goal	and	the	parameter	value	automatically
update	to	the	desired	values.	Minor	rounding	differences	notwithstanding,	Goal	Seek	has
produced	the	same	value,	 ,	that	we	found	using	the	somewhat	clumsier	method	of
trial	and	error.

Goal	Seek	can	be	a	very	powerful	tool	when	working	with	DDS	models,	and	we	will	make



extensive	use	of	it	throughout	the	text.

In	this	section	we	introduced	two	basic	Excel	techniques:	graphing	and	Goal	Seek.	Graphs
provide	a	way	of	quickly	understanding	some	basic	behavior	of	a	model,	such	as	whether	a
quantity	is	increasing	or	decreasing	and	whether	the	increase	or	decrease	is	speeding	up	or
slowing	down.	We	also	saw	how	to	label	a	graph	and	observed	that	a	nice	property	of	Excel
graphs	is	that	they	automatically	update	to	reflect	changes	we	make	to	relevant	parts	of	the
spreadsheet.

This	section	was	also	devoted	to	introducing	Goal	Seek,	a	powerful	tool	for	finding	unknown
parameter	values.	Goal	Seek	will	save	us	a	lot	of	time	and	tedium	as	we	will	no	longer	have	to
rely	on	the	guess	and	check	method	for	finding	parameters.

1.3.1	Section	Exercises

1.	 Consider	the	DDS	below:

a.	 Graph	the	population	over	a	period	of	10 years	if	 .

b.	 Graph	the	population	over	a	period	of	10 years	if	 .

c.	 Describe	the	difference	in	the	behavior	of	the	population	in	the	two	cases.

2.	 Consider	the	DDS	below:

a.	 Graph	the	population	over	a	period	of	10 years	if	 .

b.	 Graph	the	population	over	a	period	of	10 years	if	 .

c.	 Describe	the	difference	in	the	behavior	of	the	population	in	the	two	cases.

3.	 Describe	the	difference	in	population	behavior	between	Exercises	and	.

4.	 For	each	of	the	graphs	in	Exercises	and	,	describe	the	population	behavior	as	“increasing
at	an	increasing	rate,”	“increasing	at	a	decreasing	rate,”	“decreasing	at	an	increasing	rate,”
or	“decreasing	at	a	decreasing	rate.”

5.	 Sketch	a	graph	by	hand	for	each	of	the	following	situations.

a.	 A	population	where	 	and	the	population	is	increasing	over	time	at	an
increasing	rate.

b.	 A	population	where	 	and	the	population	is	increasing	over	time	at	a
decreasing	rate.

c.	 A	population	where	 	and	the	population	is	decreasing	over	time	at	a
decreasing	rate.



d.	 A	population	where	 	and	the	population	is	decreasing	over	time	at	an
increasing	rate.

6.	 Consider	the	DDS	given	by	 .	If	the	initial	population	is
500,	use	Goal	Seek	to	determine	the	value	for	a	that	results	in	a	population	of	600	12 years
later.

7.	 Consider	the	DDS	given	by	 .	If	the	initial	population	is	400,
use	Goal	Seek	to	determine	the	value	for	r	that	results	in	a	population	of	800	10 years	later.

8.	 Extension:	In	Example	1.8	we	determined	that	an	average	of	12.23	Mississippi	sandhill
cranes	were	captive-reared	and	released	annually	between	1981	and	1993.	Table	1.3	gives
the	actual	numbers,	taken	from	table	2	in	Valentine	and	Lohoefener	(1991),	for	the	years
1981–1990.

a.	 How	does	12.23	compare	to	the	average	number	of	cranes	that	were	actually	released?

b.	 What	factor(s)	might	account	for	the	difference?

c.	 Using	a	rate	of	decline	of	6%,	and	the	actual	release	values	from	1981	to	1990,
estimate	how	many	cranes	there	were	in	1990.	(Note:	this	exercise	will	require	a
significant	modification	of	the	crane	Excel	spreadsheet.)

d.	 Use	Goal	Seek	to	determine,	on	average,	how	many	cranes	must	have	been	released	in
1991,	1992,	and	1993	in	order	to	end	up	with	135 cranes	in	1993.

9.	 Regarding	white-tailed	deer,	recall	the	Curtis	and	Sullivan	(2001)	estimate	that	deer
populations	can	double	every	2–3	years.	In	Examples	1.9	and	1.10,	we	based	our	Excel
work	on	a	doubling	time	of	3 years.

a.	 Use	Goal	Seek	to	rework	Examples	1.9	and	1.10	in	the	text,	this	time	assuming	a
doubling	time	of	2 years.

b.	 How	does	the	new	harvesting	number	compare	to	the	previous	estimate	of	780,000?

c.	 Explain	why	the	answer	for	b	makes	sense	in	the	context	of	the	problem.

1.4	EXPLICIT	FORMULAS
So	far	our	study	of	population	models	has	been	largely	computational.	In	this	chapter	we	take	a
more	analytic	approach	and	try	to	learn	as	much	as	possible	about	how	the	models	will	behave
without	having	to	resort	to	Excel.

Our	goal	is	to	see	how	much	we	can	learn	just	by	a	careful	examination	of	our	DDS	formulas.
The	main	idea	is	to	repeatedly	apply	the	DDS	formula	until	a	pattern	emerges;	we	then	use	the
pattern	to	write	down	an	algebraic	formula	for	our	model	known	as	an	explicit	formula.	While
the	algebra	in	this	section	can	be	somewhat	involved,	the	payoff	will	be	a	powerful	new	tool
for	studying	our	models.



1.4.1	Explicit	Formula	for	Exponential	Growth
We	return	to	the	first	type	of	DDS	we	encountered—one	that	changed	exponentially,	either	by
growing	or	declining	by	a	fixed	percentage	each	year.	Recall	that	the	general	version	of	the
DDS	for	such	a	situation	was	found	to	be

where	r	is	the	annual	rate	of	change	so	that	a	declining	population	will	have	a	negative	value
for	r.	Originally	we	did	not	simplify	the	DDS.	Instead,	we	concentrated	on	the	setup	of	the
model	and	its	implementation	in	Excel.	Now	we	do	simplify	the	expression	slightly	because
doing	so	will	make	our	subsequent	work	easier.	The	simplification	is	a	matter	of	factoring	out
the	common	term	 .	Beginning	with	the	DDS,	we	get

We	now	have	a	more	compact	version	of	our	DDS:	 .	This	is	often	the
form	that	is	presented	in	discussions	of	exponential	models.

Next,	starting	in	year	1,	we	apply	this	simplified	version	of	the	DDS	over	and	over,	looking	for
a	pattern	to	emerge.	Our	simplified	DDS	tells	us	that	to	find	the	population	after	1 year,	we
compute

To	find	the	population	after	2 years,	we	calculate

Here	is	where	we	do	something	different.	From	the	first	step,	we	have	an	alternate	expression
for	P(1),	namely,	 .	Thus,	we	can	substitute	for	P(1)	on	the	right-hand	side	of
the	expression	for	P(2).	The	details	of	the	substitution	are

Thus,	we	now	know	 	and	we	repeat	the	process.

From	the	DDS	we	know	that	to	compute	the	population	after	3 years,	we	must	compute



But	from	our	recent	work,	we	know	that	 .	As	before	we	substitute	this
expression	for	P(2)	on	the	right-hand	side	to	get

So	now	we	know	that	 .	We	may	see	a	pattern	emerging,	but	we	do	one
more	example	to	be	sure.

We	know	that	 	so	we	make	a	substitution	and	write

To	summarize	our	findings	so	far,	we	have	found	that

Based	on	these	observations,	we	can	with	some	confidence	write	down	how	to	find	P(t)	for
any	value	of	t,	namely,

This	is	our	first	example	of	an	explicit	formula	for	a	DDS,	and	it	differs	from	the	DDS	in
important	ways.	Perhaps	the	most	important	difference	is	that	using	the	DDS	to	calculate	the
population	in	1 year	requires	that	we	first	compute	the	population	in	the	previous	year;	with	the
explicit	formula	there	is	no	such	limitation.	We	may	calculate	the	population	in	any	year
directly	by	plugging	the	correct	value	for	t	into	the	formula.	The	next	example	shows	us	how
the	explicit	formula	provides	us	with	an	alternate	way	to	answer	a	previous	problem.



Example	1.15:

Use	the	explicit	formula	to	rework	Example	1.1	without	resorting	to	Excel.

For	the	grizzly	bear	population	in	Example	1.1,	we	had	 	and	 	in	1993.
We	need	to	find	the	population	9 years	later	in	2002,	so	 .	Since	we	have	the	explicit
formula	 	at	our	disposal,	we	plug	in	all	of	the	necessary	information	on
the	right-hand	side	to	get

It	is	worth	looking	back	at	our	first	solution	to	verify	that	this	is	the	same	result	we
achieved	by	applying	the	DDS	nine	times.

Oftentimes	in	working	problems	dealing	with	exponential	models,	it	will	be	up	to	us	whether
to	work	with	the	DDS	or	the	explicit	formula.	This	will	largely	be	a	matter	of	personal
preference,	and	we	will	see	below	that	each	approach	has	its	pros	and	cons.

1.4.2	The	Geometric	Series	Formula
Before	we	proceed	to	finding	the	explicit	formula	for	exponential	growth	with	stocking	or
harvesting,	we	need	to	lay	some	groundwork.	In	particular,	we	will	need	the	geometric	series
formula,	a	way	of	quickly	computing	long	sums	of	numbers	that	follow	the	pattern

In	other	words,	the	sum	is	made	up	of	powers	of	some	number,	x,	where	each	term	is
multiplied	by	the	same	constant,	c.	The	notation	“ ”	means	that	we	include	all	terms	in
between.	When	a	sum	is	in	the	form	of	a	geometric	series,	the	geometric	series	formula	gives
us	an	efficient	way	of	summing	the	terms.	This	formula	is	given	as	Theorem	1.1.

Theorem	1.1

Given	a	sum	that	is	in	the	form	of	a	geometric	series,	we	have

The	message	contained	in	the	formula	is	that	instead	of	finding	the	sum	by	adding	term	by
term,	we	can	just	compute	the	right-hand	side.	This	can	be	a	great	time	saver	as	we	show
in	the	examples	below.



Example	1.16:

Use	the	geometric	series	formula	to	compute	the	sum

The	hard	part	is	recognizing	the	pattern	and	seeing	that	 ,	 ,	and	 	(so	
).	The	rest	is	a	matter	of	plugging	these	values	into	the	right-hand	side	of	the

formula:

Instead	of	having	to	add	up	13	individual	numbers,	we	get	away	with	only	a	few
computations.	It	is	worth	verifying	such	a	result	at	least	once	by	adding	up	all	of	the
individual	terms.

Even	if	we	are	patient	enough	not	to	mind	adding	the	13	numbers	in	the	previous	example,
surely	we	can	agree	that	in	the	next	example	the	geometric	series	formula	is	the	way	to	go.

Example	1.17:

Compute	the	sum	 .

Here	we	recognize	that	 ,	 ,	and	 ,	so	 .	Thus,	the	entire	sum	can	be

found	by	computing	 .

Though	we	have	used	the	geometric	series	formula	productively,	we	should	note	that	we	have
not	explained	why	it	is	true.	It	is	not	difficult	to	find	an	explanation	with	a	quick	search	of	the
web,	and	we	also	provide	a	brief	account	in	Appendix	A.	We	should	note	that	it	is	not	always
straightforward	to	apply.	Often	expressions	are	not	written	in	a	form	that	is	easy	to	recognize
as	a	geometric	series,	and	the	real	difficulty	is	knowing	when	to	apply	the	formula,	not	how	to
apply	the	formula.

In	the	next	section	we	see	how	to	use	the	geometric	series	formula	to	develop	an	explicit



formula	for	our	affine	models.

1.4.3	Explicit	Formula	for	Harvesting	and	Stocking
The	algebra	involved	in	finding	an	explicit	formula	for	exponential	growth	with	harvesting	or
stocking	is	somewhat	more	complicated	than	in	the	basic	exponential	case.	However,	the
method	is	the	same:	apply	the	DDS	repeatedly	and	look	for	a	pattern.

Recall	that	the	DDS	for	exponential	growth	with	stocking	or	harvesting	has	the	general	form

where	r	is	the	growth	rate	and	a	is	the	number	that	is	being	added	to	or	subtracted	from	the
population	each	year.	If	a	is	positive	we	are	stocking,	while	if	a	is	negative	we	are	harvesting.

Our	first	step	is	to	simplify	the	DDS	just	as	we	did	for	the	exponential	model	to	get

For	 	we	have	 ,	and	for	 	we	have	 .	Note
that	just	like	we	did	for	the	exponential	model,	we	can	make	a	substitution	for	P(1)	on	the
right-hand	side	of	the	second	equation.	Doing	so	yields

If	we	multiply	through	by	 	on	the	right,	we	get

Similarly,	consider	the	DDS	for	 :

Though	it	becomes	slightly	messy,	we	substitute	for	P(2)	on	the	right-hand	side,	multiply
through	by	 ,	and	arrive	at

There	is	the	hint	of	a	pattern	emerging,	which	we	highlight	by	summarizing	the	results	in	Table
1.4.



TABLE	1.4	Looking	for	a	Pattern	for	the	Affine	Model

t P(t)

1

2

3

We	do	one	more	iteration,	 .	The	DDS	tells	us	that

Substituting	in	for	P(3)	and	multiplying	through	by	 	gives

We	now	have	one	more	row	to	add	to	Table	1.5.

TABLE	1.5	Continuing	to	Look	for	a	Pattern	for	the	Affine	Model

t P(t)

1

2

3

4

The	pattern	seems	to	be	that	we	get	an	exponential	term	(identical	to	the	one	from	our	first
explicit	formula)	followed	by	a	geometric	series	inside	the	curly	brackets.	If	this	pattern	holds
for	all	t,	we	should	have	that

To	simplify	the	geometric	series	part,	we	must	recognize	that	the	constant,	“a,”	plays	the	role
of	“c,”	that	“ ”	plays	the	role	of	“ ,”	and	that	“ ”	plays	the	role	of	“x.”	We	apply	the
geometric	series	formula	and	finally	arrive	at	the	explicit	formula	for	our	affine	DDS:



A	slight	simplification	gives	the	form	we	will	most	often	use:

In	the	following	section	we	show	how	our	explicit	formulas	provide	us	with	an	alternate	way
of	solving	some	of	our	previous	problems.

1.4.4	Applying	New	Tools	to	Old	Problems
In	this	section	we	do	not	tackle	any	new	problems,	but	we	solve	some	of	our	previous
problems	in	a	new	way—this	time	relying	on	our	explicit	formulas	rather	than	Excel.

Example	1.2	asked	us	to	determine	the	annual	growth	rate	for	the	Yellowstone	grizzly
population	between	1993	and	2002.	The	way	we	first	solved	the	problem	was	to	implement
our	DDS	in	Excel	and	experiment	with	different	growth	rates	until	we	achieved	the	desired
2002	population.	As	a	second	method,	we	also	used	Excel’s	Goal	Seek	tool.	Now	we	present
a	third	option,	this	time	solving	the	problem	without	Excel.	We	will	need	a	calculator—any
scientific	calculator	will	do,	including	the	one	built	in	to	most	computers	or	smart	phones.



Example	1.18:

Rework	Example	1.2	by	applying	the	appropriate	explicit	formula.

Recall	that	there	were	an	estimated	197	bears	in	1993	and	416	bears	in	2002.	Thus,	
,	and	we	need	to	find	a	value	for	r	that	will	produce	 .	The

appropriate	explicit	formula	to	use	is	the	one	for	an	exponential	DDS:	 .
In	this	example	we	know	that	 	so	we	have	 .

We	also	know	that	 ,	so	we	have

Since	 ,	we	plug	in	416	for	P(9)	and	solve	for	r,	the	only	remaining	unknown.
This	will	involve	taking	ninth	roots	of	both	sides	of	an	equation.	We	get

We	have	found	that	 ,	a	result	that	agrees	both	with	our	original	trial-and-error
approach	and	with	the	slicker	Goal	Seek	method.

Using	the	explicit	formula	to	solve	a	harvesting	or	stocking	problem	is	more	computationally
complex,	but	the	methods	are	exactly	the	same	as	in	the	previous	example.



Example	1.19:

Rework	Example	1.7	from	Section	1.2.1	using	the	appropriate	explicit	formula.

Recall	that	the	situation	in	Example	1.7	was	a	sandhill	crane	population	declining	at	a	rate
of	6%	per	year,	so	 .	The	population	in	1980	was	 ,	and	in	an	attempt	to
preserve	the	population,	 	captive-reared	cranes	were	being	added	to	the	population
each	year.	We	need	to	find	P(13),	the	population	in	1993.	Noting	that	 ,	we	plug
everything	we	know	into	the	explicit	formula	for	stocking	and	use	a	calculator	to	compute
the	population.	The	initial	setup	will	be

From	this	point	it	is	a	matter	of	being	careful	with	our	calculator	and	the	order	of
operations.	We	get

Once	again	we	have	about	105 cranes	in	1993.

We	do	one	more	example.
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Example	1.20:

Rework	Example	1.8	using	the	appropriate	explicit	formula.

The	task	in	Example	1.8	was	to	find	how	many	cranes	should	be	added	to	the	population
each	year	in	order	to	end	up	with	135	birds	in	1993.	This	amounts	to	solving	for	the
unknown	a	in	the	explicit	formula,	where	 ,	 ,	 ,	and	 .
We	plug	in	everything	we	know	and	solve	for	a.	The	initial	setup	is

Next	we	carefully	work	through	the	numerical	calculations	until	we	are	able	to	solve	for
the	unknown	a:

This	is	the	same	answer	that	Excel	gave	us	earlier,	and	once	again	if	forced	to	round,	we
would	round	up	to	 	to	ensure	the	goal	of	135 cranes	is	met.

This	section	was	dedicated	to	finding	explicit	formulas	for	the	DDS	models	we	have	used	so
far.	The	algebra	became	somewhat	involved	for	the	harvesting	and	stocking	models,	but	the
result	of	our	hard	work	is	that	we	now	have	formulas	that	allow	us	to	compute	populations	for
any	year	without	first	having	to	calculate	all	previous	years’	populations.	Table	1.6
summarizes	our	results.

TABLE	1.6	A	Comparison	of	the	DDS	and	Explicit	Formulas	for	the	Exponential	and
Affine	Models

DDS Corresponding	Explicit	Formula

Exponential	model

Affine	model

Even	after	only	a	handful	of	examples,	we	can	begin	to	see	some	of	the	strengths	and



weaknesses	of	the	different	approaches.	For	someone	comfortable	with	algebra	and	perhaps
less	so	with	Excel,	the	explicit	formula	approach	would	seem	the	clear	leader.	For	someone
who	enjoys	working	with	Excel	or	who	likes	to	avoid	algebra	whenever	possible,	the	trial-
and-error	or	Goal	Seek	method	makes	more	sense.	Either	method	is	fine	as	long	as	it	is
appropriate	for	the	problem	that	needs	to	be	solved.

While	it	is	true	that	there	are	times	when	an	explicit	formula	will	allow	us	to	answer	questions
that	Excel	cannot	easily	answer,	we	should	issue	a	very	important	caution	against	growing	too
fond	of	explicit	formulas.	We	noted,	particularly	in	the	affine	derivation,	that	the	algebra
involved	in	finding	an	explicit	formula	in	the	first	place	can	quickly	become	complicated.	In
fact	for	most	of	the	DDS	models	that	we	will	encounter,	it	is	impossible	(or	at	the	very	least
unreasonable)	to	find	an	explicit	formula	at	all.	This	is	why	Excel	is	such	a	natural	choice	as
our	primary	method	of	dealing	with	DDS	models:	Excel	allows	us	to	get	results	that	would
otherwise	be	intractable.

1.4.5	Section	Exercises

For	all	of	the	exercises	below,	use	the	appropriate	explicit	formula	to	find	the	solution.

1.	 Consider	the	DDS	given	by	 .	Determine	the	population	in	year
5	if	the	initial	population	is	400.

2.	 Consider	the	DDS	given	by	 .	Determine	the	population	in	year
8	if	the	initial	population	is	300.

3.	 Consider	the	DDS	given	by	 .	Determine	the	population	in
year	5	if	the	initial	population	is	400.

4.	 Consider	the	DDS	given	by	 .	Determine	the	population	in
year	8	if	the	initial	population	is	1000.

5.	 Consider	the	DDS	given	by	 .	If	the	initial	population	is
500,	determine	the	value	for	a	that	results	in	a	population	of	600	12 years	later.

6.	 Consider	the	DDS	given	by	 .	Determine	the	initial
population	if	the	population	in	year	10	is	400.

7.	 Given	the	initial	population	estimate	of	197	Yellowstone	grizzlies	in	1993	and	the	later
estimate	of	416	Yellowstone	grizzlies	in	2002,	we	found	that	the	population	grew	by	about
8.65%	per	year.

a.	 Using	the	8.65%	growth	rate,	what	would	your	model	predict	for	the	population	in	the
year	2193?

b.	 Does	your	answer	in	part	a	seem	reasonable?	Why	or	why	not?

c.	 Suppose	that	the	1993	Grizzly	Bear	Recovery	Plan	had	never	been	implemented	and
that	the	1993	estimate	of	a	1%	growth	rate	continued	to	hold.	How	long	would	it	have
taken	for	the	population	to	reach	416	bears?



8.	 Regarding	white-tailed	deer,	recall	the	Curtis	and	Sullivan	estimate	that	deer	populations
can	double	every	2–3	years.	We	based	our	Excel	work	on	a	doubling	time	of	3 years.

a.	 Rework	Examples	1.9	and	1.10	in	the	text,	this	time	assuming	a	doubling	time	of	2 
years.

b.	 How	does	the	new	harvesting	number	compare	to	the	previous	estimate	of	780,000?

c.	 Explain	why	the	answer	in	b	makes	sense	in	the	context	of	the	problem.

9.	 Consider	the	explicit	formula	for	our	harvesting/stocking	model.	Show	that	if	there	is	no
stocking	or	harvesting,	then	the	formula	is	the	same	as	the	explicit	formula	for	plain
exponential	growth.

10.	 According	to	the	Population	Reference	Bureau	(PRB),	the	world	population	was	7.2 
billion	in	2014.	The	PRB	projects	a	population	of	9.7 billion	in	the	year	2050	(PRB,
2014).	Most	of	the	world’s	population	growth	is	expected	to	occur	in	developing	nations,
particularly	in	Africa.

a.	 Assuming	an	exponential	model	for	the	world’s	population	growth	through	2050,
determine	the	growth	rate	given	the	PRB	estimates.

b.	 Using	the	growth	rate	you	found	in	a,	what	does	your	model	predict	for	the	world
population	in	2055?

11.	 The	US	Census	in	2000	(see	www.census.gov)	estimated	the	population	of	the	United
States	to	be	281.4 million.	Without	immigration,	the	population	would	grow	by
approximately	0.6%	each	year.	Data	available	at	www.census.gov	indicates	that
approximately	1,000,000	immigrants	enter	the	United	States	each	year.

a.	 Create	a	flow	diagram	for	the	US	population.

b.	 From	the	flow	diagram,	give	the	DDS.

c.	 Use	the	explicit	formula	to	predict	the	US	population	in	the	year	2050.

d.	 How	does	your	projection	compare	to	the	419.9 million	projected	for	2050	by	the	US
Census?

12.	 Extension:	Suppose	a	population	of	cranes	declines	by	6%	per	year	without	human
intervention.	A	hacking	program	is	begun	with	100 cranes	added	the	first	year.	Each
subsequent	year	the	number	of	cranes	added	increases	by	10%.	Thus,	in	year	2,	110 cranes
are	added,	and	in	year	3,	121	are	added.

a.	 Give	a	flow	diagram	for	the	crane	population.

b.	 Give	the	corresponding	DDS.

c.	 Implement	the	model	in	Excel	where	the	growth	rate,	r,	the	initial	hacking	number,	a0,
and	the	annual	percentage	increase	in	the	hacking	number,	s,	are	all	stored	as
parameters.

http://www.census.gov
http://www.census.gov


d.	 Project	the	crane	population	in	year	10	if	initially	there	are	400 cranes.

13.	 Extension:	Following	the	spirit	of	the	derivation	for	the	explicit	formula	for	an	affine
model,	find	the	explicit	formula	for	the	general	model	described	in	Exercise	.	Confirm	your
result	in	12(d)	by	using	the	explicit	formula.

1.5	EQUILIBRIUM	VALUES	AND	STABILITY
In	this	section	we	take	an	analytic	approach	to	studying	the	global	behavior	of	our	models.	In
particular,	we	are	interested	in	understanding	their	long-term	behavior	without	having	to	resort
to	Excel	calculations.

1.5.1	Equilibrium	Values
Fundamental	to	the	study	of	a	DDS	is	finding	its	equilibrium	values.	An	equilibrium	value	is	a
number,	which	we	denote	by	P*	in	the	context	of	population,	at	which	the	DDS	does	not
change.	In	other	words,	P*	is	an	equilibrium	value	if	setting	 	results	in	
also.

For	the	models	we	have	seen	so	far,	we	can	find	the	equilibrium	values	numerically	by
appealing	to	Excel	or	algebraically	by	using	the	DDS.	Below	we	look	at	examples	of	each
approach.

We	begin	by	finding	the	equilibrium	value	for	the	Mississippi	sandhill	crane	population
modeled	in	Example	1.7.	In	that	problem	we	assumed	that	the	crane	population	was	naturally
declining	at	a	rate	of	6%	per	year	and	that	on	average	9 cranes	were	added	to	the	population
each	year.

Example	1.21:

Using	the	information	in	Example	1.7,	find	the	equilibrium	value	for	the	crane	population.

First	we	find	the	required	value	via	trial	and	error	in	Excel.	We	use	the	spreadsheet	that
we	developed	for	the	crane	population,	and	we	experiment	with	different	values	for	the
initial	population	until	we	find	a	value	for	P*.	This	amounts	to	searching	for	an	initial
population	that	causes	all	subsequent	populations	to	stay	at	that	value.	A	few	moments
spent	trying	different	values	for	P(0)	yield	the	result	that	 .	The	resulting
spreadsheet	is	shown	in	Figure	1.43.	Notice	that	the	population	is	no	longer	changing.



FIGURE	1.43	Sandhill	crane	population	at	equilibrium.

An	easy	mistake	to	make	at	this	point	is	to	see	that	the	population	values	are	not	changing
and	think	that	this	must	mean	no	cranes	are	entering	or	leaving	the	population.	This	is	not
the	case.	Cranes	are	still	dying	and	still	being	added;	it	is	just	that	the	additions	and
subtractions	are	exactly	balancing	each	other	out.

Finding	equilibrium	values	by	trial	and	error	can	be	tedious,	especially	since	Goal	Seek
is	no	help	in	these	situations.	A	more	efficient,	and	more	exact,	approach	is	to	use	the
DDS	for	the	problem	and	a	little	bit	of	algebra.	Recall	that	the	DDS	for	the	crane
population	is	given	by



The	defining	property	for	an	equilibrium	value,	P*,	is	that	plugging	P*	in	for	
results	in	 .	This	leads	us	to	substitute	P*	into	both	sides	of	the	DDS	to	get	the
equation

All	that	remains	is	to	solve	for	P*:

This	is	the	same	value	we	found	using	Excel.	We	can	always	check	that	our	equilibrium
value	is	correct	by	plugging	it	into	Excel	as	the	initial	population.	If	we	have	really	found
an	equilibrium	value,	the	population	will	stay	at	that	value.

Another	nice	property	of	finding	the	equilibrium	value	algebraically	is	that	it	is	no	more
difficult	to	find	in	the	general	case	than	it	is	in	particular	examples.	We	supply	the	details
below	for	the	general	affine	model.

Recall	that	the	general	DDS	for	exponential	growth	with	stocking	or	harvesting	is	given	by

To	find	the	equilibrium	value	for	such	a	system,	we	proceed	as	before.	We	know	that	if	we
plug	in	P*	on	the	right,	then	we	must	also	get	P*	on	the	left.	Thus,	we	have	that

Solving	for	P*,	we	get

We	see	that	finding	an	equilibrium	value	for	such	a	model	turns	out	to	be	a	relatively
straightforward	calculation—just	divide	the	harvesting	or	stocking	number	by	the	growth	rate



and	be	careful	with	the	minus	signs.

1.5.2	Stability
Finding	the	equilibrium	values	for	a	DDS	is	not	the	end	of	the	story.	In	fact	there	are	many
different	types	of	equilibrium	values,	and	we	begin	looking	at	some	of	these	different	types
now.

We	start	by	considering	two	main	types	of	equilibrium	values:	those	that	are	stable	and	those
that	are	unstable.	It	is	possible	for	an	equilibrium	value	to	be	a	bit	of	both,	but	for	now	we
stick	with	just	the	two	types.	A	stable	equilibrium	is	an	equilibrium	value	where	the	DDS
tends	toward	that	value	even	if	we	start	away	from	it.	An	unstable	equilibrium	is	an
equilibrium	value	where	the	DDS	tends	away	from	that	value	if	we	start	away	from	it.	We
illustrate	the	different	types	using	two	familiar	examples:	the	sandhill	cranes	and	the	white-
tailed	deer.

Example	1.22:

Consider	the	sandhill	crane	population	that	we	assume	is	naturally	declining	by	6%	each
year	and	which	we	stock	with	9 cranes	per	year.	We	have	already	found	that	 .
Determine	the	stability	of	this	equilibrium	value.

The	question	is	whether	this	equilibrium	is	stable	or	unstable.	In	other	words,	if	the
population	of	cranes	begins	at	a	value	other	than	150,	will	the	population	tend	toward	150
(stable)	or	further	away	from	it	(unstable)?	We	answer	the	question	with	Excel	by
graphing	the	population	over	time	with	several	different	initial	populations.

Note	what	is	happening	in	Figure	1.46.	No	matter	what	value	we	select	for	the	initial
population	of	cranes,	all	populations	tend	toward	the	equilibrium	value	of	150.	This	is	an
example	of	a	stable	equilibrium—even	if	we	begin	off	of	the	equilibrium	value,	the
population	still	tends	toward	it.

E.6	Working	with	Multiple	Columns

In	this	Excel	section	we	show	how	to	copy	formulas	across	columns	and	how	to
graph	multiple	columns	simultaneously.

First	we	open	the	crane	spreadsheet	and	create	four	additional	columns	for
population	as	in	Figure	1.44.	Note	in	Figure	1.44	that	we	have	entered	a	different
initial	population	in	each	column,	including	the	equilibrium	value	for	one	of	them.



FIGURE	1.44	Sandhill	crane	Excel	model	with	multiple	population	columns.

Next	we	use	the	thin	cross	and	fill	handle	to	copy	our	formulas	from	Population	1
over	to	the	other	columns.	Excel	automatically	updates	the	formulas	just	as	it	does
when	we	copy	them	down;	only	here	it	automatically	updates	columns	rather	than
rows.	Once	we	copy	the	formulas	over,	we	copy	them	all	down	at	once.	In	this
example	we	copy	them	down	to	year	 .	Figure	1.45	shows	our	setup	with	the
formulas	displayed	for	the	first	two	initial	populations.

FIGURE	1.45	Sandhill	crane	Excel	model	with	population	DDS	copied	across.

Next	we	graph	all	five	populations	on	the	same	axes	by	selecting	all	columns
(including	the	column	for	time)	as	well	as	the	column	headings.	Using	a	scatter	graph



with	straight	lines	but	no	markers,	we	produce	the	graph	given	in	Figure	1.46.

FIGURE	1.46	Cranes	with	stable	equilibrium	value.

In	the	next	example	we	highlight	the	difference	between	a	stable	and	an	unstable	equilibrium.



Example	1.23:

Consider	the	white-tailed	deer	population	that	we	assume	is	naturally	growing	by	26%
each	year	and	from	which	we	harvest	780,000	deer	per	year.	Find	the	equilibrium	value
for	the	deer	population	and	determine	its	stability.

Our	previous	work	has	shown	us	that	finding	P*	is	relatively	painless.	We	compute	
.	Thus,	the	equilibrium	value	in	this	example

is	3,000,000	deer.

To	see	if	it	is	stable	or	unstable,	we	create	a	graph	as	we	did	for	the	crane	population	that
shows	the	graphs	for	several	different	initial	populations	of	deer.	In	the	graph	below	we
use	initial	populations	of	2,500,000,	2,750,000,	3,000,000,	3,250,000,	and	3,500,000.	We
copy	all	of	our	formulas	down	to	year	6	and	give	the	completed	graph	in	Figure	1.47.

FIGURE	1.47	Deer	with	unstable	equilibrium	value.

Note	that	unlike	the	crane	populations,	the	deer	populations	tend	to	move	away	from	the
equilibrium	value,	except	for	the	one	that	started	right	on	it.	Because	populations	that	start
off	of	the	equilibrium	tend	to	move	away	from	it,	we	call	the	equilibrium	for	the	deer
population	unstable.

In	this	section	we	introduced	the	notion	of	an	equilibrium	value	(where	a	DDS	stays	constant),
and	we	discussed	two	main	types	of	equilibrium	values:	stable	and	unstable.	Stability	is
determined	by	what	happens	when	a	population	starts	away	from	the	equilibrium	value.	Stable



equilibrium	values	are	marked	by	having	populations	that	start	off	the	equilibrium	and	tend
toward	them,	while	unstable	equilibrium	values	have	populations	that	start	off	the	equilibrium
and	move	further	away	from	them.	Note	that	what	happens	at	the	equilibrium	value	is	the	same
in	both	cases:	if	you	plug	an	equilibrium	value	into	your	Excel	model,	the	population	will	stay
at	that	value.	Staying	at	the	equilibrium	value	does	not	make	it	stable;	it	just	confirms	that	it	is
an	equilibrium.

1.5.3	Section	Exercises

1.	 Consider	the	DDS	given	by	 .

a.	 Find	all	equilibrium	values	for	the	DDS.

b.	 Use	Excel	to	confirm	that	the	values	found	in	a	are	in	fact	equilibrium	values.

c.	 Determine	the	stability	of	any	equilibrium	values	found	in	a	by	producing	an
appropriate	Excel	graph.

2.	 Consider	the	DDS	given	by	 .

a.	 Find	all	equilibrium	values	for	the	DDS.

b.	 Use	Excel	to	confirm	that	the	values	found	in	a	are	in	fact	equilibrium	values.

c.	 Determine	the	stability	of	any	equilibrium	values	found	in	a	by	producing	an
appropriate	Excel	graph.

3.	 Extension:	Consider	the	DDS	given	by	 .

a.	 Find	all	equilibrium	values	for	the	DDS.

b.	 Use	Excel	to	confirm	that	the	values	found	in	a	are	in	fact	equilibrium	values.

c.	 Determine	the	stability	of	any	equilibrium	values	found	in	a	by	producing	an
appropriate	Excel	graph.

4.	 Extension:	Consider	the	DDS	given	by	
.

a.	 Find	all	equilibrium	values	for	the	DDS.

b.	 Use	Excel	to	confirm	that	the	values	found	in	a	are	in	fact	equilibrium	values.

c.	 Determine	the	stability	of	any	equilibrium	values	found	in	a	by	producing	an
appropriate	Excel	graph.

5.	 Extension:	Consider	the	DDS	given	by	 .

a.	 Find	all	equilibrium	values	for	the	DDS.

b.	 Use	Excel	to	confirm	that	the	values	found	in	a	are	in	fact	equilibrium	values.



c.	 Determine	the	stability	of	any	equilibrium	values	found	in	a	by	producing	an
appropriate	Excel	graph.

6.	 Consider	the	Yellowstone	grizzly	population	where	the	growth	rate	is	assumed	to	be	8.65%
and	there	is	no	stocking	or	harvesting.	Show	algebraically	that	the	only	equilibrium	value
for	the	population	is	zero.

7.	 Show	that	for	any	exponential	model	where	there	is	no	harvesting	or	stocking,	the	only
equilibrium	value	is	0.

8.	 Consider	the	sandhill	crane	population	where	we	assume	that	the	rate	of	decline	is	
.	Find	the	number	of	cranes	we	would	have	to	stock	each	year	in	order	to	make

the	long-term	crane	population	turn	out	to	be	400 cranes.

9.	 The	US	Census	in	2000	(see	www.census.gov)	estimated	the	population	of	the	United
States	to	be	281.4 million.	Without	immigration,	the	population	would	grow	by
approximately	0.6%	each	year.	Data	available	at	www.census.gov	indicates	that
approximately	1,000,000	immigrants	enter	the	United	States	each	year.

a.	 Suppose	that	instead	of	growing	by	0.6%	per	year,	the	US	population	was	declining	by
0.6%	each	year.	Give	the	DDS	for	this	situation.

b.	 At	what	value	would	the	US	population	stabilize	in	the	long	run?

c.	 Produce	a	graph	that	indicates	the	US	population	would	stabilize	at	this	value	no	matter
where	it	started.

d.	 If	the	US	government	wanted	to	stabilize	the	population	at	400,000,000,	how	many
people	should	it	allow	to	immigrate	each	year?

http://www.census.gov
http://www.census.gov


2
PERSONAL	FINANCE
From	calculating	car	payments	to	projecting	retirement	income	to	pricing	stock	options,
mathematical	modeling	plays	a	vital	role	in	the	financial	world.	For	many	people	the	time
during	or	soon	after	college	is	the	time	when	they	begin	to	assume	financial	independence.
Bank	accounts,	credit	cards,	cars,	houses,	and	retirement	accounts	become	realities	that	must
be	addressed,	and	the	more	one	understands	about	the	underlying	mathematics,	the	better
prepared	one	will	be	able	to	address	them.

In	this	chapter	we	begin	to	get	a	sense	of	not	only	the	power	of	mathematical	modeling	but	also
the	power	of	mathematical	abstraction:	the	mathematics	we	developed	in	Chapter	1	in	the
context	of	population	growth	is	the	very	mathematics	that	we	will	need	to	model	many
financial	concepts.	It	is	this	wide	applicability	that	makes	the	hard	work	of	mathematical
abstraction	worth	it.

In	the	sections	that	follow,	we	develop	spreadsheet	models	for	a	variety	of	financial	situations
that	students	have	already	faced	or	likely	soon	will.	By	the	end	of	the	chapter,	we	will	have
created	a	set	of	financial	tools	that	we	can	actually	use	to	make	decisions	about	our	financial
lives.	While	the	goal	of	the	present	text	is	to	introduce	material	that	is	as	realistic	and	relevant
as	possible,	some	choices	and	simplifying	assumptions	have	to	be	made	to	begin	making
progress.	These	assumptions	will	be	made	explicit	in	the	text.

On	the	topic	of	relevance,	we	should	note	that	no	example	will	be	equally	relevant	to	every
student’s	financial	situation.	Some	students	rely	on	student	loans,	some	do	not.	Some	have
credit	card	debt,	some	do	not.	Some	work	long	hours	to	pay	for	school,	while	some	are
fortunate	enough	not	to	have	to.	Even	within	broad	categories	of	similarity,	every	financial
situation	is	unique,	and	the	static	cases	and	examples	presented	here	cannot	hope	to	account	for
this	diversity	completely.	There	are,	however,	numerous	exercises	that	invite	the	reader	to
personalize	a	situation	by	using	his	or	her	own	salary,	debt	situation,	taste	in	cars,	or	dream
home.

We	begin	with	a	discussion	of	compound	interest	and	savings	accounts.

2.1	COMPOUND	INTEREST	AND	SAVINGS
Money	that	is	deposited	into	a	bank	savings	account	does	not	remain	locked	away	in	a	vault.
Rather	the	bank	uses	that	money	to	try	to	make	money,	for	example,	by	lending	it	out	to	other
customers.	Because	the	bank	is	using	the	money	and	not	the	account	owner,	the	bank	pays	the
account	owner	a	small	fee	for	allowing	it	the	use	of	that	money.	This	fee	is	called	interest	and
is	the	reason	depositing	money	into	a	bank	savings	account	is	better	than	stashing	it	under	a
mattress.	We	call	the	amount	deposited	into	an	account	the	principal	and	the	amount	that	is	in
the	account	at	any	given	time	the	balance.



We	begin	with	an	example	of	how	interest	is	calculated.

Example	2.1:

Suppose	$10,000	is	deposited	into	an	account	that	earns	6%	interest	every	year,	credited
to	the	account	at	the	end	of	the	year.	Find	the	amount	of	interest	earned	and	the	balance	in
the	account	at	the	end	of	the	year.

In	this	example	the	principal	is	the	original	deposit	of	$10,000.	The	interest	rate	is	6%,	so
at	the	end	of	the	year,	the	account	will	be	credited	with

in	interest.	The	balance	in	the	account	at	the	end	of	the	year	is	the	principal	plus	the
interest,	or	$10,600.00.

When	interest	is	left	in	an	account	so	it	can	earn	yet	more	interest,	the	interest	is	said	to	be
compounding;	this	idea	is	fundamental	to	a	great	number	of	financial	calculations.	As	we	shall
gradually	come	to	see,	compound	interest	is	a	powerful	force	that	can	dramatically	influence
the	course	of	our	finances	in	a	good	way	when	saving	and	in	a	bad	way	when	borrowing.	We
examine	how	compounding	works	in	the	next	example.

Example	2.2:

Suppose	the	balance	from	the	previous	example	is	left	in	the	account	for	another	year.
Find	the	balance	at	the	end	of	the	second	year.

We	start	with	$10,600.	The	account	pays	6%,	so	at	the	end	of	the	year,	we	will	earn

in	interest.	The	balance	will	be

Notice	that	in	the	second	year	we	earned	more	interest	($636.00)	than	we	did	in	the	first
($600.00).	This	difference	is	due	to	the	effect	of	compounding:	the	$600.00	in	interest	we
earned	the	first	year	was	left	in	the	account	to	earn	interest	during	the	second	year.	The
$36.00	difference	may	seem	insignificant,	but	over	long	periods	of	time,	compounding	can
make	a	huge	difference	in	our	bottom	line.

Before	doing	any	further	examples,	we	take	a	moment	to	set	up	a	discrete	dynamical	system
(DDS)	for	our	interest-bearing	savings	account.	The	balance	in	the	account	is	our	dependent



variable,	and	the	only	factor	influencing	the	balance	is	the	annual	interest	deposit.	When
interest	is	paid	once	a	year,	we	say	that	the	interest	is	compounded	annually.	We	let	r	stand	for
the	interest	rate,	so	for	our	previous	examples,	we	have	 .	We	denote	the	balance	in	the
account	after	t	years	by	B(t).

The	flow	diagram	is	straightforward	to	create.	Because	interest	serves	to	increase	our	balance,
we	represent	it	as	an	arrow	pointing	into	the	oval	for	account	balance.	The	resulting	flow
diagram	is	shown	in	Figure	2.1.

FIGURE	2.1	Flow	diagram	for	a	savings	account.

Translating	the	information	in	the	diagram	into	an	equation	gives	us	the	corresponding	DDS:	
.

At	this	point	we	should	recognize	something	that	will	prove	to	be	very	useful.	The	context	is
different,	but	what	we	have	here	is	another	example	of	exponential	growth—exactly	the	kind	of
model	we	encountered	in	our	beginning	population	models.	Instead	of	a	population	we	have	an
account	balance,	and	instead	of	a	growth	rate,	we	have	an	interest	rate,	but	all	of	the
mathematics	is	the	same.	A	benefit	of	recognizing	this	fact	is	that	we	can	immediately	use	the
explicit	formula	we	developed	in	Chapter	1	and	we	can	also	use	the	Excel	models	we	created
with	only	minor	modifications.



Example	2.3:

Use	the	explicit	formula	for	exponential	growth	to	rework	Examples	2.1	and	2.2.

Recall	that	the	explicit	formula	for	exponential	growth	without	harvesting	or	stocking	is
given	by

In	our	financial	context	we	instead	use	 ,	where	B(t)	is	the	account
balance	after	t	years,	B(0)	is	the	initial	deposit,	and	r	is	the	annual	interest	rate.	For	the
balance	after	1 year,	we	have	 ,	so	we	write

For	the	balance	after	2 years,	we	have	 	and	thus

Both	answers	agree	with	the	ones	we	found	before.

A	complication	in	financial	computations	is	that	interest	is	often	not	just	paid	once	a	year	but
instead	can	be	paid	at	a	variety	of	different	frequencies.	Sometimes	interest	is	paid	annually,
sometimes	semiannually,	sometimes	monthly,	and	sometimes	even	daily.	Most	of	the	financial
instruments	that	we	will	study	use	monthly	compounding,	and	we	will	assume	monthly
compounding	from	now	on	unless	explicitly	stated	otherwise.

The	idea	behind	monthly	compounding	is	that	instead	of	receiving	all	of	the	interest	once	a
year,	the	account	is	credited	with	one	twelfth	of	the	interest	each	month.	This	arrangement	is
better	for	the	saver	because	interest	deposited,	say,	in	February,	will	itself	earn	interest	for	the
rest	of	the	year.	In	the	next	example	we	assume	that	our	6%	rate	is	compounded	monthly
instead	of	annually,	and	we	verify	that	monthly	compounding	is	to	our	advantage.

Example	2.4:

Assuming	an	initial	deposit	of	$10,000	and	an	interest	rate	of	6%	compounded	monthly,
find	the	account	balance	after	1 year	and	after	2 years.	Compare	these	results	to	the
balances	in	Examples	2.1	and	2.2.

The	fact	that	we	are	using	monthly	compounding	means	we	have	to	be	careful	both	with
our	interest	rate	and	with	our	time	units.	This	is	our	first	example	of	using	time	units	other



than	years,	but	this	will	not	affect	the	problem-solving	process.	Also,	an	easy	mistake	to
make	is	to	read	the	statement	“6%	compounded	monthly”	and	assume	that	we	earn	6%
every	month.	Unfortunately	this	is	not	the	case,	and	we	will	need	to	exercise	care	in
remembering	that	“6%	compounded	monthly”	means	that	we	earn	one	twelfth	of	6%	each

month.	Thus	for	the	current	example,	we	earn	a	monthly	rate	of	 .

Now	that	we	know	the	monthly	rate,	we	set	up	our	flow	diagram	just	as	before.	Since	time
is	now	in	months,	the	diagram	in	Figure	2.2	shows	the	monthly	change	in	the	account
balance,	not	the	annual	change.

FIGURE	2.2	Flow	diagram	for	account	with	monthly	compounding.

From	the	diagram	we	write	down	the	DDS:

Our	task	is	to	find	the	balance	after	1 year	and	after	2 years.	Because	the	time	units	for	the
DDS	are	months	instead	of	years,	this	amounts	to	computing	the	balance	for	 	and	

 months.	We	can	use	either	Excel	or	the	explicit	formula	to	do	so,	but	here	we	use
Excel.	We	need	to	keep	in	mind	that	because	the	balance	changes	monthly,	we	will	have	a
column	for	t	in	months	instead	of	years,	and	we	must	drag	our	formulas	down	to	 	to
get	to	2 years.	Figure	2.3	shows	the	setup	of	the	Excel	spreadsheet	including	the	formula
for	the	balance.



FIGURE	2.3	Excel	savings	account	model	setup.

Note	that	we	store	the	interest	rate	in	its	own	cell,	refer	to	it	with	absolute	addressing,	and
divide	it	by	12	in	the	formula.	Including	the	division	by	12	in	the	formula	saves	us	a	step
and	also	has	the	benefit	of	not	introducing	a	rounding	error.

After	copying	the	formula	down	to	month	24,	we	see	in	Figure	2.4	that	Excel	gives	us	a
balance	of	$10,616.78	after	1 year.	If	we	look	further	down,	we	will	see	a	balance	of
$11,271.60	after	two.



FIGURE	2.4	Excel	results	for	Example	2.4.



If	we	compare	these	results	to	the	examples	using	annual	compounding,	we	see	that
monthly	compounding	nets	us	an	additional	$16.78	over	1 year	and	an	additional	$35.60
over	two.

The	preceding	example	points	to	the	following	general	rule:	the	more	frequently	interest	is
compounded,	the	better	it	is	for	the	saver.	This	rule	will	be	explored	more	in	the	exercises.

The	interest	rate	we	have	been	using,	6%,	is	higher	than	what	is	typically	paid	on	an	ordinary
savings	account.	At	this	writing	a	good	interest	rate	for	a	savings	account	is	about	1%
(Bankrate,	2015).	Six	percent	is,	however,	a	reasonable	rate	of	return	for	an	investment
account,	say,	one	that	is	invested	in	stocks	and	bonds.	The	phrase	“rate	of	return”	differs	from
“interest	rate”	in	that	it	includes	many	factors	that	influence	the	growth	of	an	investment,	such
as	dividends,	interest,	and	appreciation.	For	now	we	do	not	really	care	exactly	why	the
account	is	growing;	all	we	care	about	is	the	rate	of	this	growth,	represented	as	a	single	number.
We	use	this	rate	of	return,	or	growth	rate,	exactly	the	same	way	we	use	interest	rates	when
calculating	balances.	Our	habit	will	be	to	express	the	rate	of	return	in	terms	of	its	equivalent
interest	rate.

For	many	savings	or	investment	accounts,	the	owner	does	not	just	make	an	initial	deposit	and
leave	it	to	grow.	Often	after	opening	an	account,	the	owner	makes	regular	deposits	as	a	way	of
saving	for	some	future	goal	such	as	a	car,	tuition,	a	house,	or	retirement.	In	the	next	example	we
examine	such	a	regular	savings	program,	assuming	monthly	deposits	and	monthly	compounding.

Example	2.5:

Find	the	balance	in	an	account	after	10 years	if	initially	$5000	is	deposited	and	every
month	thereafter	a	deposit	of	$100	is	made.	The	account	earns	the	equivalent	of	7%	annual
interest	compounded	monthly.

First	we	create	a	flow	diagram	to	represent	the	situation.	We	should	have	an	arrow	each
for	the	monthly	interest	rate	and	the	monthly	deposit.	As	usual	we	must	remember	that	the

monthly	interest	rate	is	found	by	dividing	the	stated	rate	by	12:	 .	Note	in
the	flow	diagram	in	Figure	2.5	that	since	interest	and	deposits	both	serve	to	increase	our
account	balance,	both	are	represented	by	inward-pointing	arrows.



FIGURE	2.5	Flow	diagram	for	savings	account	with	monthly	deposits.

Both	arrows	represent	additions	to	the	account	balance,	so	our	DDS	is

Recall	that	this	is	the	same	form	that	our	DDS	would	take	if	we	were	considering	a
growing	population	that	included	stocking:	 .	Once	we
recognize	that	fact,	we	can	immediately	write	down	the	explicit	formula	for	the	account
balance	in	any	month,	namely,

where	t	is	the	number	of	months,	r	is	the	interest	rate	compounded	monthly	(as	a	decimal),
B(0)	is	the	initial	deposit,	and	a	is	the	monthly	deposit.	In	the	current	example	the	formula
becomes

Using	the	explicit	formula	to	find	the	balance	after	10 years	is	now	a	matter	of	plugging	in
the	appropriate	value	for	t,	in	this	case	120	(10 years = 120 months).	Plugging	in	
yields

So	after	10 years	our	savings	account	will	have	grown	to	$27,356.67.



E.7	Improving	Spreadsheet	Readability
In	this	Excel	section	we	show	how	to	make	some	basic	changes	to	our	spreadsheets	to
make	them	easier	to	read	and	use	including	hiding/unhiding	rows	and	making	use	of
number	formats.

In	this	section	we	set	up	an	Excel	spreadsheet	that	will	allow	us	to	easily	investigate	the
effects	of	all	of	the	different	parameters	on	a	savings	account.	The	relevant	quantities	are
the	interest	rate,	the	initial	deposit,	the	monthly	deposit,	and	the	length	of	time	we	maintain
the	account.	We	allow	for	easy	changes	to	the	first	three	by	storing	them	in	their	own	cells,
and	we	may	change	the	length	of	time	by	dragging	our	formulas	down	to	the	appropriate
time.	A	screenshot	of	the	resulting	spreadsheet	is	shown	in	Figure	2.6.	Note	that	in	the
formula	for	the	DDS,	we	divide	the	interest	rate	by	12	to	account	for	monthly
compounding.

FIGURE	2.6	Excel	savings	account	model	with	monthly	payments.

Excel	allows	us	to	choose	the	format	for	numbers	in	the	spreadsheet.	To	change	numbers
to	dollars-and-cents,	or	currency,	format,	we	select	the	cell(s)	we	wish	to	change,	and
then	from	the	Home	tab,	select	Currency	from	the	drop-down	menu	in	the	Number	group.
The	spreadsheet	as	it	appears	with	updated	formatting	is	shown	in	Figure	2.7.



FIGURE	2.7	Excel	savings	account	model	with	updated	formatting.

By	dragging	the	formulas	down	to	the	120th	month,	we	can	confirm	the	result	we	obtained
via	the	explicit	formula.	Excel	produces	a	balance	of	$27,356.79	after	10 years,	or	120 
months.	The	slight	discrepancy	between	this	value	and	the	one	obtained	earlier	is	due	to
the	fact	that	Excel	keeps	many	more	decimal	places	in	its	calculations.	Generally	the
Excel	result	will	be	more	accurate	than	those	we	produce	with	the	explicit	formula	and	a
calculator	unless	we	are	willing	to	keep	many	more	decimal	places	in	our	calculations.

When	we	have	to	copy	formulas	down	so	far	to	arrive	at	an	answer,	it	can	be	awkward
having	to	scroll	up	and	down	in	order	to	see	the	parameters	involved	and	the	final	answer
simultaneously.	Excel	provides	a	way	around	this	by	allowing	us	to	hide	rows	that	we	do
not	want	to	see.

First,	we	point	to	the	gray	row	number	on	the	left	side	of	the	spreadsheet.	The	pointer
should	become	a	small,	black,	right-pointing	arrow.	Once	the	arrow	appears,	(left)	click
on	the	number	of	the	first	row	to	be	hidden,	and	drag	down	to	the	last	row	to	be	hidden.
Release	the	mouse	button.	Once	all	of	the	desired	rows	are	selected,	there	are	two	ways
to	hide	them.	One	way	is	to	select	the	Format	drop-down	out	of	the	Cells	group	from	the
Home	tab.	Then	select	down	to	Hide	and	Unhide	and	click	Hide	Rows.	Alternately,	we
can	right-	(ctrl)	click	on	the	selected	area,	and	choose	Hide.	After	successfully	hiding	all



but	the	first	and	last	rows,	we	should	see	the	screen	pictured	in	Figure	2.8.

FIGURE	2.8	Excel	results	from	Example	2.5	with	rows	hidden.

Now	if	we	want	to	investigate	the	effect	of	changing	a	parameter	on	the	final	balance,	we
can	type	in	a	new	value	for	the	parameter	and	not	have	to	scroll	down	pages	and	pages	to
see	the	result.	We	can	unhide	the	rows	by	first	selecting	across	the	break	line	using	the
right-pointing	arrow	pointer	then	choosing	Unhide	Rows	from	the	Format	drop-down	or
via	right-clicking	on	the	relevant	area.

2.1.1	Saving	for	a	Car
Oftentimes	people	save	with	a	particular	goal	in	mind	whether	it	is	college	tuition,	a	car,	or	a
down	payment	on	a	house.	The	spreadsheet	we	have	just	created	is	an	excellent	tool	for
deciding	whether	or	not	a	given	savings	goal	is	attainable.	Perhaps	we	know	how	much	we	can
deposit	initially,	and	we	need	to	figure	out	if	we	can	afford	the	required	monthly	deposit	to
reach	our	goal	in	a	certain	amount	of	time.	Or	maybe	we	know	how	much	we	can	deposit	a
month	and	need	to	know	how	long	it	will	take	to	accomplish	the	goal.	We	typically	will	not
have	a	lot	of	control	over	the	interest	rate	available	to	us,	but	we	can	still	investigate	the
effects	of	a	change	in	the	rate.

To	fix	things	we	suppose	that	a	first-year	college	student	wants	to	save	for	a	car	for	after



graduation.	The	car	is	a	4-year-old	Volkswagen	Jetta	SEL	sedan	in	good	or	better	condition
with	48,000 miles	on	it,	which	as	of	this	writing	has	a	fair	market	value	of	approximately
$14,500	according	to	the	Kelley	Blue	Book	website	(Kelley	Blue	Book,	2015).	In	the
following	problems	we	use	our	spreadsheet	and	the	Goal	Seek	command	to	answer	questions
which	should	be	of	interest	to	our	student.

Example	2.6:

Suppose	that	the	student	has	already	saved	$5000.00	to	put	toward	the	purchase	of	the
Jetta	and	has	an	account	that	earns	5%	annual	interest	compounded	monthly.	Find	the
monthly	contribution	required	for	the	student	to	be	able	to	afford	the	car	in	5 years.

Since	we	have	stored	all	of	our	parameters	in	their	own	cells,	they	are	easy	to	change.	We
type	5%	for	our	interest	rate	and	$5000	for	our	initial	deposit.	We	have	also	copied	our
formulas	down	to	  months	and	hidden	most	of	the	rows	we	do	not	need	to	see.	The
spreadsheet	with	a	monthly	deposit	stand-in	value	of	$100	should	appear	as	in	Figure	2.9.

FIGURE	2.9	Excel	setup	for	Example	2.6.

By	glancing	at	cell	B67,	we	can	see	that	a	$100.00	monthly	deposit	is	not	enough	to



enable	the	student	to	purchase	the	Jetta.	To	find	a	sufficient	monthly	deposit,	we	use	Goal
Seek	as	shown	in	Figure	2.10.

FIGURE	2.10	Setting	up	Goal	Seek	for	Example	2.6.

Remember	that	we	are	telling	Goal	Seek	to	“make	cell	B67	(the	balance	after	60 months)
$14,500.00	by	changing	cell	C4	(the	monthly	deposit).”	Once	we	click	okay,	Goal	Seek
tells	us	that	the	student	needs	to	save	at	least	$118.86	per	month.

Sometimes	we	know	how	much	we	can	afford	to	save	every	month,	and	so	the	question	is	not
“How	much	do	I	need	to	save?,”	but	rather	“How	much	car	can	I	afford	based	on	what	I	can
save?”	Our	spreadsheet	handles	this	kind	of	question	as	well.



Example	2.7:

Suppose	we	still	have	an	account	that	earns	5%	annual	interest	compounded	monthly	and
that	we	start	the	account	with	an	initial	deposit	of	$5000.	If	we	can	manage	to	save	$50
per	month	over	the	5 years	until	graduation,	how	much	can	we	spend	on	a	car?

All	we	need	to	do	here	is	type	in	$50.00	for	our	monthly	deposit.	The	spreadsheet	then
reports	that	the	balance	in	60 months	(still	located	in	cell	B67)	will	be	$$9817.10.	The
website	www.cars.com	allows	a	potential	used	car	buyer	to	specify	a	desired	make	and
model	and	the	maximum	price	she	or	he	is	willing	to	pay	(Cars.com,	2015).	Selecting
Volkswagen	Jetta	for	under	$10,000.00	yields	a	long	list	of	options,	all	of	which	are	either
(i)	more	than	4 years	old,	(ii)	have	relatively	high	mileage,	or	(iii)	have	fewer	options
than	the	$14,500	car.	Still,	if	we	are	fortunate	enough	to	have	$5000	to	use	as	our	initial
deposit,	our	$50.00	a	month	could	put	us	into	a	good	vehicle	in	5 years’	time.

Still	another	relevant	way	of	looking	at	a	car	purchase	is	to	set	a	savings	goal	and	then	figure
out	how	long	it	will	take	to	reach	it	if	we	know	how	much	per	month	we	can	save.

http://www.cars.com
http://Cars.com


Example	2.8:

Given	a	$5,000.00	initial	deposit,	an	interest	rate	of	5%	compounded	monthly,	and	the
ability	to	save	$75	per	month,	how	long	will	it	take	to	save	$14,500	for	the	4-year-old
Jetta?

Once	we	type	in	$75.00	for	the	monthly	deposit,	we	only	need	to	drag	our	formulas	down
until	the	balance	reaches	at	least	$14,500.	(We	may	do	this	with	or	without	unhiding	the
hidden	rows.)	After	doing	so,	we	see	in	Figure	2.11	that	it	would	take	84 months,	or	7 
years,	to	reach	our	savings	goal.

FIGURE	2.11	Excel	results	for	Example	2.8.

The	previous	series	of	examples	shows	just	how	flexible	our	Excel	model	can	be.
Furthermore,	even	though	all	of	our	examples	can	be	done	via	the	explicit	formula,	once	we



have	the	spreadsheet	set	up,	the	Excel	version	will	be	faster—especially	for	questions	like
Example	2.8	that	ask	us	to	find	an	unknown	time.

It	can	be	eye-opening	to	convert	a	required	monthly	deposit	into	the	time	it	would	take	to	earn
that	amount	at	a	typical	wage.	A	useful	website	for	wage	information	is	the	US	Department	of
Labor,	Bureau	of	Labor	Statistics:	www.bls.gov	(BLS,	2015).	In	particular,	the	Occupational
Outlook	Handbook	contains	a	variety	of	information	about	hundreds	of	jobs	and	careers,
including	their	required	training	and	expected	earnings	(BLS,	2012).	While	working	exercises
that	ask	for	a	current	salary,	consider	answering	the	same	questions	using	potential	jobs	for
after	graduation	using	information	found	in	the	Occupational	Outlook	Handbook.

Example	2.9:

Suppose	that	a	student’s	current	job	is	waiting	tables	at	a	full	service	restaurant.	How
many	extra	hours	per	week	would	the	student	need	to	work	in	order	to	accomplish	the
savings	goal	from	Example	2.6?

From	Example	2.6	we	know	the	student	needs	to	save	$118.86	every	month.	According	to
the	Bureau	of	Labor	Statistics,	as	of	May	2012,	the	median	hourly	wage	for	waiters	and
waitresses	was	$8.92	(including	tips).	Thus	we	compute	that	our	student	will	need	to

work	an	additional	 	h	per	month,	or	approximately	 	h	per
week.	This	is	the	equivalent	of	about	one	extra	lunch	shift	per	week.	Depending	on	the
other	demands	on	the	student’s	time	and	finances,	this	may	or	may	not	be	feasible,	but	it
puts	the	attainability	of	the	goal	into	a	useful	context.

In	the	next	section	we	examine	a	savings	goal	with	a	much	longer	time	horizon:	saving	for
retirement.	In	such	an	example	we	really	get	to	appreciate	the	power	of	compounding	over	the
long	term.

2.1.2	Saving	for	Retirement
With	pensions	becoming	increasingly	unavailable,	saving	for	retirement	is	a	necessity	if	we
want	our	golden	years	to	be	comfortable.	It	is	also	something	that	takes	careful	planning,
including	the	consideration	of	many	issues	beyond	the	scope	of	this	text.	However,	most	of	the
technical	difficulties	in	retirement	planning	involve	how	to	save,	not	whether	to	save.	When
saving	for	retirement,	there	are	a	few	basic	rules	to	go	by:

1.	 Start	early.	Nowhere	is	the	power	of	compound	interest	more	evident	or	more	important
than	in	saving	for	retirement.	The	reason	is	that	retirement	is	usually	such	a	long-term	goal
that	the	effects	of	compounding	build	over	decades	instead	of	just	a	couple	of	years.
However,	the	only	way	to	take	advantage	of	such	long-term	benefits	is	to	start	saving	as
early	as	possible,	even	if	the	amount	does	not	seem	like	much	now.	Unfortunately	the	very

http://www.bls.gov


fact	that	retirement	is	so	far	off	makes	it	psychologically	difficult	to	save	during	the	years
when	it	is	most	beneficial.	And	of	course	early	in	a	person’s	career	is	also	when	salary	is
usually	the	lowest.

2.	 Use	automatic	payroll	deduction.	If	we	have	our	monthly	retirement	contribution	deducted
directly	from	our	paycheck	and	deposited	automatically	into	our	retirement	account,	we
will	not	be	tempted	to	spend	the	money.

3.	 Take	advantage	of	any	employer-sponsored	retirement	plans	that	offer	matching	funds.
Matching	funds	are	contributions	that	an	employer	will	make	to	an	employee’s	retirement,
provided	the	employee	also	contributes	at	a	certain	level.

4.	 Take	advantage	of	tax-advantaged	accounts	such	as	IRAs,	Roth	IRAs,	401(k)’s,	etc.	It	is
not	always	the	case	that	these	instruments	are	advantageous,	but	they	make	sense	for	most
people.	Good	web	sources	of	information	about	these	kinds	of	plans	include
www.fidelity.com,	www.vanguard.com,	and	http://www.irs.gov/Retirement-
Plans/Traditional-and-Roth-IRAs.

In	the	examples	that	follow,	we	examine	the	soundness	of	rule	#1:	start	early.	We	assume	that
a	person	enters	the	workforce	at	age	25	and	retires	at	age	65.	By	the	time	the	person	retires,	he
or	she	needs	to	have	saved	enough	money	to	live	on	for	the	rest	of	their	lives.	Since	different
people	will	have	different	needs	and	different	goals	for	their	level	of	retirement	income,	there
is	no	one	savings	goal	that	will	be	right	for	everyone.	A	fairly	conservative	goal	for	a
retirement	nest	egg	would	be	$1 million	(Franklin,	2006).	In	the	next	example	we	find	the
monthly	retirement	contribution	necessary	for	someone	who	wants	to	retire	with	$1 million.

Example	2.10:

Determine	how	much	per	month	a	person	would	need	to	save	over	a	40-year	career	in
order	to	retire	with	a	nest	egg	of	$1 million.	We	assume	no	initial	deposit	and	that	we
have	a	retirement	account	that	earns	the	equivalent	of	8%	annual	interest,	compounded
monthly.

The	context	of	this	problem	is	different	than	when	we	were	saving	for	a	car,	but	the
mathematics	is	exactly	the	same.	We	can	use	the	savings	account	spreadsheet	that	we
already	created	and	modify	it	to	include	an	initial	deposit	of	$0.00	and	an	interest	rate	of
8%.

We	save	for	a	total	of	40 years,	or	480 months.	So	the	first	thing	we	do	is	copy	our
formulas	down	to	 	and	hide	most	of	them.	After	making	these	modifications,	we	see
the	screenshot	given	in	Figure	2.12.

http://www.fidelity.com
http://www.vanguard.com
http://www.irs.gov/Retirement-Plans/Traditional-and-Roth-IRAs


FIGURE	2.12	Excel	setup	for	Example	2.10.

Next	we	use	Goal	Seek	to	figure	out	the	monthly	deposit	that	would	be	required	to	end	up
with	$1,000,000	in	cell	B487	by	changing	cell	C4.	By	now	we	should	be	reasonably
comfortable	with	using	Goal	Seek	in	this	manner,	so	we	omit	the	details.	After	a
successful	Goal	Seek,	we	see	that	a	monthly	deposit	of	$286.45	is	required	in	order	to
become	a	millionaire	at	age	65.	This	result	shows	clearly	the	power	of	compounding.
Over	our	40-year	career,	we	made	480	deposits	of	$286.45	to	the	account.	That	means	our
total	contribution	to	the	account	was	 ,	but	we	ended	up	with
$1 million	in	the	account.	Thus	we	earned	 	in
interest!

In	the	next	example	we	emphasize	the	role	that	time	plays	in	saving	for	retirement	by	reworking
Example	2.10	for	different	start	dates	for	our	saving.



Example	2.11

Under	the	same	assumptions	as	Example	2.10,	determine	the	monthly	retirement
contribution	that	would	be	required	to	save	$1 million	by	age	65	if	we	start	saving	at	ages
30,	35,	40,	45,	50,	55,	and	60.

In	this	example	we	need	only	copy	down	the	formula	for	shorter	amounts	of	time	and	then
reapply	Goal	Seek.	If	we	start	saving	at	age	30,	for	example,	we	will	save	for	35 years
rather	than	40.	Therefore	we	only	need	to	copy	the	formula	down	to	
months.	We	summarize	all	of	the	calculations	in	Table	2.1.

TABLE	2.1	Monthly	Contributions	Required	to	Save	$1	Million	by	Age	65	for
Different	Starting	Ages

Age	When	Savings
Begins

Years	until
Retirement

Monthly	Contribution	Required	for	$1
Million	Goal	($)

25 40 286.45
30 35 435.94
35 30 670.98
40 25 1,051.50
45 20 1,697.73
50 15 2,889.85
55 10 5,466.09
60 5 13,609.73

Notice	how	much	a	delay	of	even	5 years	can	affect	the	required	monthly	deposit.	If	we
consider	that	a	delay	in	saving	at	the	beginning	of	a	career	also	puts	many	people	into
prime	child-rearing	years,	we	can	see	that	saving	the	required	amount	would	become	even
more	difficult.	The	moral	is	that	the	longer	we	allow	compounding	to	work	for	us,	the
easier	it	is	to	attain	our	goals.	Our	mathematical	model	makes	this	moral	precise	by
showing	us	exactly	how	delaying	the	start	of	saving	will	affect	the	attainability	of	our
goal.

In	this	section	we	learned	some	of	the	language	and	mathematics	required	for	dealing	with
compound	interest.	Though	we	focused	on	savings	accounts,	the	results	are	all	valid	for	more
general	investing	accounts	as	well	provided	we	know	the	interest	rate	equivalent	to	the
account’s	overall	rate	of	return.	We	developed	a	spreadsheet	model	for	saving	that	included	the
interest	rate,	initial	deposit,	and	constant	monthly	deposits,	and	we	used	this	model	to	answer
many	relevant	questions	in	the	context	of	saving	for	a	car	or	retirement.

In	the	next	section	we	examine	the	effects	of	compounding	in	the	context	of	borrowing	for



major	purchases	such	as	a	car	or	home.

2.1.3	Section	Exercises

1.	 Consider	a	savings	account	that	earns	4%	interest	compounded	monthly.	You	initially
deposit	$1000.00	into	the	account	and	make	no	further	deposits	or	withdrawals.

a.	 Draw	a	flow	diagram	for	the	monthly	balance	in	the	account.

b.	 Find	the	DDS.

c.	 Determine	the	account	balance	2 years	from	the	initial	deposit.

d.	 Determine	how	long	it	will	take	the	deposit	to	double.

2.	 Consider	a	savings	account	that	earns	6%	interest	compounded	monthly.	You	make	an
initial	deposit	and	then	monthly	deposits	thereafter.

a.	 Give	the	flow	diagram	for	the	monthly	balance.

b.	 Find	the	DDS.

c.	 Determine	the	balance	after	10 months	using	Excel.

d.	 Determine	the	balance	after	10 months	using	the	appropriate	explicit	formula.

e.	 Suppose	the	initial	deposit	is	$5000.	Determine	the	monthly	deposit	required	for	the
balance	to	grow	to	$10,000	in	2 years.

3.	 Consider	a	savings	account	that	earns	5%	interest	compounded	monthly.	Suppose	you	will
withdraw	$500	per	month	from	the	account.

a.	 Find	the	DDS	for	the	balance.

b.	 Find	the	equilibrium	value	for	the	balance.

c.	 Determine	the	stability	of	the	equilibrium	value.

d.	 Interpret	the	meaning	of	the	equilibrium	value	in	the	context	of	a	savings	account
balance.

4.	 Decide	on	something	you	would	like	to	save	up	for,	for	example,	a	car,	a	down	payment	on
a	house,	a	charitable	contribution,	etc.,	and	choose	your	time	horizon,	that	is,	how	long	you
want	it	to	take.	Find	an	online	savings	or	money	market	account	and	use	the	interest	rate
given.	Assume	monthly	compounding.	If	you	can	afford	to	deposit	10%	of	your	goal
initially,	determine	the	monthly	deposit	required	for	you	to	reach	your	goal	in	the	time	you
choose.

5.	 The	“Rule	of	70”	is	a	useful	financial	rule	of	thumb	that	estimates	the	doubling	time	for	an
investment.	The	Rule	of	70	says	that	if	r	is	the	interest	rate	(given	as	a	percent)	for	a
savings	account	(or	rate	of	return	for	an	investment),	then	the	time	it	takes	for	an	initial

deposit	to	double,	assuming	no	further	deposits	or	withdrawals,	is	approximately	 	in



years.

a.	 Compare	what	the	rule	estimates	for	doubling	time	with	the	actual	doubling	time	for	
.

b.	 Compare	what	the	rule	estimates	for	doubling	time	with	the	actual	doubling	time	for	
.

c.	 Compare	what	the	rule	estimates	for	doubling	time	with	the	actual	doubling	time	for	
.

d.	 Compare	what	the	rule	estimates	for	doubling	time	with	the	actual	doubling	time	for	
.

6.	 Extension:	Use	the	fact	that	 	for	r	near	0	to	derive	the	Rule	of	70.

7.	 Consider	a	savings	account	that	earns	3%	interest	compounded	monthly.	Suppose	you
initially	deposit	$200	and	subsequently	deposit	$50.00	per	month.

a.	 Use	Excel	to	find	the	balance	in	the	account	after	4 years.

b.	 Use	the	appropriate	explicit	formula	to	find	the	same	balance.

c.	 Over	the	entire	4 years,	how	much	did	you	actually	deposit	into	the	account?

d.	 By	comparing	your	answer	in	c.	to	the	account	balance	after	4 years,	determine	how
much	total	interest	you	earned	over	the	4 years.

8.	 Suppose	you	have	an	account	that	earns	6%	interest.	Initially	you	deposit	$1000	into	the
account.

a.	 Find	the	balance	after	1 year	if	the	6%	is	paid	annually.

b.	 Find	the	balance	after	1 year	if	the	6%	is	compounded	monthly.

c.	 When	compounding	monthly,	the	actual	monthly	rate	is	found	by	taking	6%/12.	What	is
the	analogous	daily	rate	if	interest	is	compounded	daily?

d.	 Find	the	balance	after	1 year	if	the	6%	is	compounded	daily.

9.	 Extension:	Suppose	you	have	found	the	world’s	greatest	savings	account,	and	it	pays	100%
interest.	You	deposit	$1.00	into	the	account	initially	and	make	no	further	deposits	or
withdrawals.

a.	 Find	the	balance	after	1 year	if	interest	is	paid	annually.

b.	 Find	the	balance	after	1 year	if	interest	is	compounded	monthly.

c.	 Find	the	balance	after	1 year	if	interest	is	compounded	daily.

d.	 Find	the	balance	after	1 year	if	interest	is	compounded	hourly.

e.	 Find	the	balance	after	1 year	if	interest	is	compounded	every	second.

f.	 Does	there	seem	to	be	a	limit	on	how	high	your	balance	can	grow	due	to	more	frequent



compounding?	Do	you	recognize	this	limit?

10.	 Though	individual	needs	of	course	vary,	a	rough	estimate	for	the	amount	of	savings
someone	needs	to	live	on	in	retirement	is	$1,000,000.	Determine	how	much	per	month	a
person	would	need	to	save	in	order	to	retire	with	a	nest	egg	of	$1	million.	Assume	that	the
person	retires	at	age	65	and	has	an	account	that	earns	the	equivalent	of	9%	compounded
monthly.

a.	 Carry	out	the	calculations	if	the	person	starts	saving	at	age	25,	30,	35,	40,	45,	50,	55,
and	60.	To	organize	your	results,	fill	in	a	table	like	Table	2.1.

b.	 What’s	the	moral	of	the	story?

11.	 The	$1,000,000.00	goal	we	used	for	our	retirement	savings	plan	is	based	on	someone	who
needs	to	generate	$40,000	a	year	to	live	on	in	retirement.	Some	people	may	need	less
income	and	others	more.	Take	a	few	moments	to	decide	how	much	income	you	would	like
to	have	to	live	on	during	your	retirement	years.

a.	 A	reasonable	rule	of	thumb	is	that	you	need	to	accumulate	roughly	25	times	your
desired	income	in	order	to	generate	that	income	without	dipping	into	your	savings.
Based	on	your	income	estimate	and	this	rule	of	thumb,	how	much	will	you	need	to
accumulate	by	the	time	you	retire?

b.	 At	what	age	would	you	like	to	retire?

c.	 At	what	age	do	you	foresee	being	able	to	start	saving	for	retirement?

d.	 Assuming	that	your	retirement	account	will	earn	the	equivalent	of	9%	interest
compounded	monthly,	determine	how	much	you	will	need	to	save	each	month	during
your	career.

12.	 An	estimate	given	by	Franklin	(Franklin,	2006)	is	that	you	should	try	to	save	approximately
15%	of	your	income	each	month	for	retirement.	If	the	contribution	you	found	in	11(d)	is
15%	of	your	monthly	income,	what	annual	salary	do	you	need	to	meet	your	goal?

13.	 Extension:	As	we	advance	in	our	careers,	our	income	typically	increases	through	periodic
raises,	and	as	our	income	rises,	so	should	our	retirement	contributions.	This	is	one	good
reason	to	base	your	retirement	contribution	on	a	percentage	of	your	income	(as	in	Exercise
)	instead	of	on	a	fixed	amount	over	your	entire	career.	Doing	so	allows	you	to	increase
your	contribution	over	time	without	missing	the	extra	money.

a.	 Set	up	an	Excel	spreadsheet	for	a	retirement	plan	where	the	monthly	contribution	is	a
fixed	percentage	of	your	monthly	salary.	The	following	should	be	parameters	stored	in
their	own	cells:	monthly	salary,	monthly	contribution	%,	and	assumed	interest	rate.

b.	 Assume	you	start	saving	15%	of	your	income	each	month	at	age	25	with	a	salary	of
$36,000	a	year.	If	your	account	earns	the	equivalent	of	9%	interest	compounded
monthly,	use	your	spreadsheet	to	compute	the	amount	of	money	you	will	have	saved	by
age	65.



c.	 How	much	will	you	end	up	with	if	the	situation	is	the	same	as	in	part	b.	except	that	now
you	get	an	annual	4%	raise	in	salary?

14.	 Extension:	Suppose	a	savings	account	earns	3%	interest	compounded	monthly.	After	the
first	month	$100.00	is	deposited	into	the	account.	Each	subsequent	month	the	deposit
increases	by	1%.	Thus	in	month	2,	$101.00	is	deposited,	and	in	month	3,	$102.01	is
deposited.

a.	 Give	a	flow	diagram	for	this	situation.

b.	 Give	the	corresponding	DDS.

c.	 Implement	the	model	in	Excel	where	the	interest	rate,	r;	the	initial	monthly	deposit,	a0;
and	the	monthly	percentage	increase	in	the	monthly	deposit,	s,	are	all	stored	as
parameters.

d.	 Find	the	account	balance	after	2 years	if	initially	there	is	$400.00	in	the	account.

15.	 Extension:	Following	the	spirit	of	the	derivation	for	the	explicit	formula	for	an	affine
model,	find	the	explicit	formula	for	the	general	model	described	in	Exercise	.	Confirm	your
result	in	14(d)	by	using	this	explicit	formula.

16.	 Extension:	Suppose	you	have	access	to	an	account	that	earns	the	equivalent	of	5%	interest
compounded	monthly.	You	know	that	you	will	need	to	withdraw	$250.00	from	this	account
every	month	for	the	next	4 years.	Find	the	amount	you	would	need	to	deposit	into	the
account	today	to	exactly	cover	all	of	those	future	withdrawals.

2.2	BORROWING	FOR	MAJOR	PURCHASES
The	previous	section	has	shown	us	what	a	powerful	advantage	compound	interest	can	be	when
saving	for	a	long-term	goal.	Unfortunately,	the	reverse	is	also	true:	compound	interest	can	make
the	cost	of	long-term	borrowing	downright	depressing.	We	examine	this	effect	by	looking	at
common	types	of	consumer	credit	including	car	loans	and	home	mortgages.	We	begin	with	car
loans.

2.2.1	Car	Loans
At	some	point	in	our	lives,	we	may	want	or	need	to	purchase	an	automobile.	It	is	also	the	case
that	many	of	us	will	take	out	a	car	loan	to	finance	at	least	part	of	this	purchase.	As	we	will	see
later,	aside	from	some	new	terminology,	we	already	have	the	mathematical	tools	necessary	to
begin	to	analyze	car	loans.

Generally	speaking	when	taking	out	a	loan,	the	lower	the	interest	rate,	the	better	it	is	for	the
borrower.	It	is	not	always	quite	that	straightforward,	however,	since	lenders	can	charge	fees	in
connection	with	the	loan	in	addition	to	interest.	The	Truth	in	Lending	Act	(TILA)	is	a	federal
law	enacted	in	1968	as	a	way	of	standardizing	how	costs	of	consumer	loans	are	reported	with
the	goal	of	making	it	easier	for	consumers	to	comparison	shop	among	lenders.	Included	in	the
TILA	was	the	introduction	of	the	annual	percentage	rate	(APR).	The	APR	is	a	rate	that	is



intended	to	represent	the	total	cost	of	a	loan,	including	interest	as	well	as	any	fees	associated
with	it,	and	hence	it	can	be	used	to	make	a	true	comparison	between	lenders:	the	one	offering
the	lower	APR	should	be	the	best	choice	for	the	borrower.	The	APR	still	does	not	always	tell
the	whole	story,	but	it	is	a	good	place	to	start.

In	the	context	of	car	loans,	the	APR	is	a	fairly	reliable	way	to	make	comparisons.	Despite	its
name,	for	car	loans	the	APR	is	actually	a	rate	that	is	compounded	monthly.	Thus,	an	APR	of
12%	would	mean	a	loan	where	1%	interest	is	charged	each	month.

When	we	borrow	money	to	purchase	a	car,	we	have	to	make	monthly	payments	over	the	term
of	the	loan.	The	term	of	the	loan	is	the	length	of	time	over	which	we	will	repay	it,	and	most	car
loans	are	for	terms	of	between	3	and	6 years,	or	between	36	and	72 months.	The	initial	amount
we	borrow	is	called	the	loan	principal,	or	the	initial	loan	balance.	We	refer	to	the	APR	as	the
interest	rate,	denoted	in	the	usual	way	by	r,	and	we	let	a	represent	the	monthly	loan	payment.
The	amount	we	borrow,	the	term,	and	the	interest	rate	all	affect	how	large	our	monthly	payment
will	be.

Next	we	show	how	to	use	Excel	and	the	mathematics	we	have	already	developed	to	calculate
our	monthly	payment,	and	we	investigate	the	effects	of	all	of	the	relevant	parameters	on	how
much	we	pay	for	a	loan.	In	the	exercises	the	reader	is	asked	to	choose	her	or	his	own	car
complete	with	options	and	investigate	different	financing	options.

Example	2.12:

Karen	decides	to	take	advantage	of	a	car	dealer’s	no-money-down	financing	offer	to	buy	a
new	car.	This	means	that	she	will	not	make	a	down	payment,	opting	instead	to	borrow	the
entire	purchase	price	of	the	vehicle,	in	this	case	a	2010	Ford	F-150	STX	pickup	truck
with	two-wheel	drive	and	an	automatic	transmission.	Karen	can	purchase	such	a	vehicle
with	70,000 miles	on	it	for	approximately	$19,600	(Car	Max,	2015).	She	decides	on	a	5-
year	loan	term,	and	as	of	January	2015,	the	average	APR	for	such	a	loan	is	approximately
3%	(Bankrate,	2015).	Use	a	DDS	and	Excel	to	compute	Karen’s	monthly	payment	on	the
loan.

Following	our	usual	notation,	we	let	B	represent	the	outstanding	balance	on	the	loan,	that
is,	the	amount	Karen	has	left	to	repay.	Since	our	time	units	are	months,	B(t)	denotes	the
outstanding	balance	after	t	months.	We	let	r	stand	for	the	APR,	so	in	this	case	 ,	and
we	let	a	stand	for	the	(as	yet	unknown)	monthly	payment.	Also,	because	Karen	is
borrowing	the	entire	purchase	price	of	the	car,	the	initial	amount,	or	principal,	of	the	loan
is	 .

The	only	two	factors	that	change	the	balance	B(t)	are	the	APR,	which	increases	the
amount	we	owe,	and	the	monthly	payment,	which	decreases	the	amount	we	owe.	It	is
important	to	remember	that	since	the	APR	is	compounded	monthly,	the	monthly	rate	is

found	by	taking	 .	A	flow	diagram	for	the	situation	is	shown	in	Figure	2.13.



FIGURE	2.13	Flow	diagram	for	auto	loan	model.

This	flow	diagram	should	look	familiar	as	it	is	the	same	diagram	we	needed	for	a
population	that	was	growing	exponentially	and	being	harvested.	The	DDS	should	also	be
familiar	since	it	is	an	affine	model:

One	consequence	of	making	such	an	observation	is	that	we	can	use	the	explicit	formula	we
already	developed	without	having	to	start	from	scratch.	For	now	we	proceed	using	the
DDS	and	Excel.

Once	we	set	up	our	spreadsheet,	the	key	to	finishing	the	problem	is	being	clear	about
exactly	what	it	is	we	are	looking	for:	the	monthly	payment	that	completely	pays	off	the
loan	in	5 years.	In	mathematical	language	this	means	we	need	to	find	a	such	that	
.	This	is	a	familiar	sort	of	exercise	with	Excel,	and	we	use	Goal	Seek	to	find	the	value	for
a.

First	we	give	the	setup	for	our	loan	spreadsheet.	We	need	to	store	the	APR	and	monthly
payment	in	their	own	cells	and	refer	to	them	using	absolute	addressing.	In	Figure	2.14	we
show	the	Excel	loan	spreadsheet	with	the	formula	for	monthly	balance	displayed.



FIGURE	2.14	Excel	auto	loan	model	setup.

We	have	entered	a	monthly	payment	of	$150	as	a	stand-in	value,	but	we	will	use	Goal
Seek	to	find	the	actual	required	payment.	To	do	so,	we	need	to	tell	Goal	Seek	to	make	cell
B67	(the	outstanding	balance	after	60 months)	equal	to	zero	by	changing	cell	C4	(the
monthly	payment).	Goal	Seek	finds	that	a	monthly	payment	of	approximately	$352.19	will
completely	pay	off	Karen’s	loan	in	60 months.

A	sobering	exercise	can	be	to	compute	not	only	the	monthly	payment	for	the	loan	but	also	the
total	cost	of	the	loan,	that	is,	the	amount	of	interest	we	pay	over	the	life	of	the	loan.	A	knee-jerk
calculation	would	be	to	take	3%	of	the	loan	amount,	$19,600,	which	would	produce	$588.00
in	interest.	Unfortunately	such	a	calculation	vastly	underestimates	the	actual	cost	of	the	loan
because	it	neglects	the	effects	of	compounding.	Just	as	compounding	can	produce	significant
benefits	when	we	are	saving,	it	can	produce	significant	negative	effects	when	we	borrow.	The
next	example	illustrates	this	point.



Example	2.13:

Determine	how	much	total	interest	Karen	paid	on	the	loan	in	Example	2.12.

This	problem	can	be	answered	using	Excel,	but	it	is	not	necessary.	What	we	need	to	do	is
compute	the	total	amount	Karen	paid	over	the	course	of	the	loan	and	then	subtract	the
initial	loan	amount:	any	amount	paid	above	the	initial	loan	amount	must	be	due	to	interest.
Since	Karen	made	60	payments	of	$353.19,	she	paid	a	total	of	

	over	the	life	of	the	loan.	The	amount	she	borrowed	was
$19,600.00;	therefore,	the	amount	of	interest	she	paid	is	

.	This	amounts	to	Karen	having	paid	about	8%	of
the	truck’s	price	in	interest	charges.

One	of	the	reasons	Karen	ended	up	paying	so	much	for	the	F-150	is	that	she	financed	the	entire
cost	of	the	truck.	Typically	buyers	must	make	a	substantial	down	payment	on	the	car	before
financing	the	rest.	A	down	payment	is	cash	paid	up	front	toward	the	cost	of	the	car.	For
example,	if	we	buy	a	$20,000.00	car	and	make	a	down	payment	of	$5,000,	we	will	only	need
to	borrow	the	remaining	$15,000.00.	One	effect	of	making	a	down	payment	is	that	by	reducing
the	amount	we	borrow,	we	also	reduce	the	monthly	payment	as	well	as	the	total	cost	of
purchasing	the	car.	While	it	is	generally	true	that	the	larger	the	down	payment	the	better,	we
will	assume	that	the	best	we	can	do	is	20%	of	the	car’s	price.	This	is	the	minimum	down
payment	level	recommended	by	www.bankrate.com	(Sizing	Up	Your	Down	Payment,	2005).

Example	2.14:

Assuming	the	same	term	and	APR	as	before,	determine	Karen’s	monthly	payment	and	total
cost	of	the	F-150	if	she	makes	a	20%	down	payment	and	finances	the	rest.

A	down	payment	of	20%	means	that	Karen	pays	$19,600 ×  	cash	up	front
and	borrows	the	rest,	in	this	case	 .	The	inclusion	of	a	down
payment	means	that	we	have	an	additional	parameter	to	include	in	our	spreadsheet.

We	follow	our	usual	practice	of	making	our	spreadsheet	as	flexible	as	possible	by
inserting	new	rows	for	(i)	the	purchase	price,	(ii)	the	down	payment	percentage,	and	(iii)
the	down	payment	in	dollars	and	cents.	We	get	Excel	to	calculate	the	down	payment	from
the	purchase	price	and	the	down	payment	percentage,	and	we	also	get	Excel	to	calculate
the	initial	loan	amount	since	it	is	no	longer	the	entire	price	of	the	vehicle.	Our	modified
Excel	spreadsheet	setup	is	shown	in	Figure	2.15.
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FIGURE	2.15	Excel	auto	loan	model	with	down	payment.

The	new	spreadsheet	with	formulas	displayed	is	given	in	Figure	2.16.



FIGURE	2.16	Excel	auto	loan	model	with	down	payment	and	formulas	displayed.

Note	that	the	down	payment	and	initial	loan	amount	are	being	calculated	automatically
based	on	the	car	price	and	the	down	payment	percentage.

Modifying	the	spreadsheet	in	this	way	takes	some	time,	and	it	is	not	strictly	necessary	for
solving	this	one	problem.	Keep	in	mind,	however,	that	we	may	want	to	investigate
different	down	payments	or	car	prices	later,	and	if	we	do,	we	will	have	already	done	most
of	the	necessary	work.

Now	we	use	Goal	Seek	to	find	the	monthly	payment	that	results	in	a	zero	balance	after	60 
months.	We	have	done	this	before,	and	so	we	only	report	the	result	of	our	Goal	Seek	here
—Karen	will	need	to	pay	$281.75	per	month.	To	find	the	total	she	pays	for	the	truck,	we
once	again	multiply	the	monthly	payment	by	the	number	of	payments	she	makes	and	obtain	

.	Together	with	her	down	payment	of	$3,920,	Karen	ends	up
paying	a	total	of	$20,825	for	the	truck,	a	savings	of	$306.40	versus	the	total	when
borrowing	the	entire	purchase	amount.	Thus	Karen’s	20%	down	payment	saves	her	about
$300	in	interest	charges	over	the	life	of	the	loan.

One	way	that	consumers	can	lower	their	monthly	payments	on	a	car	is	to	take	out	a	loan	with	a
longer	term.	A	problem	with	such	loans	is	that	they	can	easily	lead	to	what	is	called	being
“upside	down.”	This	means	that	because	the	loan	is	being	paid	back	so	slowly	and	because
cars	depreciate	so	quickly,	the	borrower	can	end	up	owing	more	on	the	loan	than	the	car	is
worth.	If	the	car	were	to	be	totaled	in	an	accident	or	if	the	car	was	stolen,	auto	insurance
would	only	pay	out	the	value	of	the	car,	so	in	this	situation	the	borrower	could	end	up	owing
money	on	a	car	that	they	no	longer	own.	In	the	exercises	the	reader	is	asked	to	investigate	how
taking	out	a	longer	loan	affects	both	the	monthly	payment	and	the	total	amount	paid	for	the
vehicle.



2.2.2	Home	Mortgages
For	many	people	the	largest	purchase	they	will	ever	make	is	the	purchase	of	a	home,	and	most
people	will	have	to	take	out	a	home	mortgage	loan	to	do	so.	When	shopping	for	a	mortgage,
borrowers	have	two	main	types	to	choose	from:	a	fixed-rate	mortgage	where	the	interest	rate	is
the	same	over	the	life	of	the	loan	or	an	adjustable-rate	mortgage	(ARM)	where	the	interest	rate
can	rise	or	fall	over	the	course	of	the	loan.	Fixed-rate	loans	have	the	advantage	of	predictable,
constant	monthly	payments	that	make	budgeting	easier,	while	ARMs	typically	offer	lower
initial	payments.	We	will	confine	our	focus	to	fixed-rate	mortgages	here.

In	addition	to	deciding	on	the	type	of	mortgage,	borrowers	also	must	select	the	term,	which	is
how	long	the	borrower	has	to	pay	back	the	loan.	Typical	terms	in	the	United	States	for	fixed-
rate	mortgages	are	15	and	30 years.	The	longer	the	term,	the	lower	the	monthly	payment,	but	a
longer	term	also	means	a	higher	total	cost	for	the	loan.	Since	mortgage	interest	rates	are	also
compounded	monthly,	our	initial	example	will	look	very	similar	to	examples	from	the	car	loan
section.	Letting	r	be	the	APR	on	the	mortgage,	a	the	monthly	payment,	and	t	time	in	months,	we
have	the	flow	diagram	in	Figure	2.17.

FIGURE	2.17	Flow	diagram	for	home	mortgage	loan	model.

The	total	monthly	mortgage	payment	typically	includes	more	than	just	the	cost	of	the	loan.	For
example,	it	may	also	include	additional	payments	for	mortgage	insurance	and	property	taxes.
The	part	of	the	monthly	payment	that	is	just	for	the	mortgage	loan	is	called	the	principal	and
interest	payment	(PIP),	and	it	is	this	payment	that	we	call	a.

We	begin	with	a	typical	example.

Example	2.15:

Find	the	principal	and	interest	payment	for	a	30-year	fixed-rate	mortgage	loan	of
$150,000.00	that	has	an	APR	of	4%.

This	is	the	same	type	of	problem	as	before	where	we	seek	the	unknown	payment	a	that
will	result	in	a	zero	loan	balance	at	the	end	of	the	term,	in	this	case	at	month	 .	We
have	a	choice	in	this	example	whether	to	use	Excel	or	the	explicit	formula,	but	here	we
will	use	Excel.	First	we	make	superficial	changes	to	the	car	loan	spreadsheet	to	reflect	the
new	mortgage	context.	The	result	is	shown	in	Figure	2.18	with	a	temporary	stand-in	value



given	for	a.

FIGURE	2.18	Excel	home	mortgage	loan	model.

Since	we	are	told	that	we	are	borrowing	$150,000,	we	assume	that	to	be	the	purchase
price	with	no	down	payment.	After	dragging	our	equations	down	to	month	360,	we	Goal
Seek	for	the	monthly	payment	that	would	result	in	a	zero	balance	at	month	360.	The	result	

	is	shown	in	Figure	2.19.



FIGURE	2.19	Excel	results	for	Example	2.15.

In	the	next	section	we	examine	our	PIP	more	closely	and	determine	exactly	how	much	of	each
payment	is	devoted	to	interest	and	how	much	to	paying	back	the	loan	principal.

2.2.3	Amortization	Schedules
Each	PIP	serves	to	pay	off	interest	earned	on	the	loan	as	well	as	paying	back	part	of	the
original	principal	that	was	borrowed.	At	the	beginning	of	a	loan,	nearly	all	of	each	payment
goes	toward	paying	interest,	but	gradually	as	the	loan	balance	decreases,	the	interest	owed
also	decreases	and	hence	the	amount	that	goes	toward	paying	off	the	principal	increases.

A	table	that	shows	exactly	how	much	of	each	loan	payment	goes	toward	paying	interest	and
how	much	goes	toward	paying	off	the	principal	is	called	an	amortization	schedule.
Amortization	schedules	are	useful	for	keeping	track	of	how	much	total	interest	has	been	paid



and	how	much	of	the	loan	is	still	left	to	be	paid	off,	which	is	necessary	information	if	the
borrower	decides	to	pay	the	loan	off	early.
We	show	how	to	produce	an	amortization	schedule	in	the	next	examples.

Example	2.16:

Determine	how	much	of	the	first	principal	and	interest	payment	from	Example	2.15	goes
toward	paying	interest	and	how	much	goes	toward	paying	off	the	principal.

We	know	that	during	the	first	month	of	our	loan,	the	principal	of	$150,000	incurs	an

interest	charge	of	 .	Our	first	payment	must	pay	all	of	the
$500.00	in	interest	charges,	and	whatever	is	left	over	will	go	toward	paying	down	the
principal,	in	this	case	 .

In	general	the	payment	a	that	occurs	at	time	t	will	first	pay	off	the	interest	charged	on	the

previous	month’s	balance:	 .	The	remainder	of	the	payment,	 ,	is	devoted
to	paying	off	the	principal.	These	observations	and	our	experience	with	Excel	will	allow	us	to
make	fairly	quick	work	of	producing	amortization	schedules.

Example	2.17:

Find	the	complete	amortization	schedule	for	the	loan	in	Example	2.15.

An	amortization	schedule	consists	of	columns	to	keep	track	of	(i)	the	part	of	each	monthly
payment	devoted	to	interest,	(ii)	the	part	of	each	payment	devoted	to	paying	down	the
principal,	(iii)	the	total	amount	of	interest	paid	to	date,	and	(iv)	the	balance	remaining	on
the	loan.	We	show	the	general	setup	for	the	amortization	spreadsheet	in	Figure	2.20.



FIGURE	2.20	Excel	amortization	model	setup.

We	already	know	the	monthly	payment,	and	our	spreadsheet	already	calculates	the	balance
remaining	for	each	month.	We	have	also	just	discussed	how	to	calculate	the	interest	charge
each	month,	noting	the	leftover	payment	amount	that	goes	to	pay	off	the	principal.	The	only
column	left	to	consider	is	the	column	for	total	interest	paid	to	date.	To	keep	track	of	this,
we	just	need	to	add	the	previous	month’s	total	interest	figure	to	the	interest	charge	for	the
current	month.	Figure	2.21	shows	the	formulas	entered	into	our	spreadsheet.	Note	that	all
new	columns	begin	at	month	1	since	that	is	when	the	first	payment	is	made.

FIGURE	2.21	Excel	amortization	model	with	formulas	displayed.

After	dragging	all	of	our	formulas	down	to	the	360th	month,	we	have	a	complete



amortization	schedule,	pictured	in	Figure	2.22	with	most	of	the	rows	hidden.

FIGURE	2.22	Excel	amortization	schedule	for	Example	2.17.

Note	that	the	row	for	the	first	month	of	the	schedule	agrees	with	the	work	we	did	on	the
first	payment	in	Example	2.15.

In	the	next	section	we	examine	one	of	the	ways	shopping	for	mortgages	differs	from	shopping
for	an	auto	loan.	As	we	will	see,	in	the	mortgage	context,	we	cannot	simply	rely	on	the	APR	to
make	a	useful	comparison	between	loan	offers.

2.2.4	Points
In	the	context	of	mortgage	lending,	a	point	is	a	fee	paid	by	the	borrower	at	closing	(when	all
loan	paperwork	is	signed	and	money	changes	hands)	for	the	purpose	of	securing	a	lower
interest	rate	than	would	otherwise	be	made	available.	One	point	is	equal	to	1%	of	the	amount
to	be	borrowed.	So	on	a	$200,000	loan,	one	point	would	cost	the	borrower	$2,000.	Not	all
loans	require	points,	and	the	decision	to	take	out	a	loan	with	or	without	points	is	an	interesting
one	that	we	are	now	in	a	position	to	investigate.

Though	it	can	vary	with	the	lender,	a	good	rule	of	thumb	is	that	each	point	paid	reduces	the



APR	on	the	loan	by	0.25–0.375%.	A	lower	interest	rate	means	a	lower	monthly	loan	payment,
but	paying	points	also	means	a	higher	up-front	cost	for	the	loan.	This	presents	the	borrower
with	a	complicated	decision:	is	it	better	to	pay	the	points	up	front	and	enjoy	lower	monthly
payments,	or	is	it	better	to	have	no	up-front	costs	but	a	higher	rate?	As	we	shall	see	in	the
following	examples,	the	answer	actually	depends	on	the	amount	of	time	the	borrower	expects
to	keep	the	loan	before	selling	the	house	or	refinancing.

Example	2.18:

Martin	will	take	out	a	30-year	fixed-rate	mortgage	of	$250,000.00.	He	can	avoid	paying
points	on	the	loan	by	accepting	an	interest	rate	of	4.25%,	or	he	can	pay	2	points	to	obtain
a	rate	of	3.75%.	Determine	Martin’s	total	cost	for	each	loan.

First	we	must	assume	that	Martin	has	enough	cash	to	pay	the	2	points,	which	comes	to	
.	Next	we	note	that	the	important	issue	here	is	the	total

amount	he	will	pay	for	each	loan	including	interest	and	points.

For	the	loan	with	no	points	and	monthly	payment	a1,	the	total	amount	paid	on	the	loan	will
be	the	number	of	months	 	times	the	monthly	payment:	 .	Then	the	total	amount
of	interest	paid	will	be	 .	Using	Goal	Seek	with	an	APR	of	4.25%
determines	Martin’s	monthly	payment	in	this	case	to	be	 ,	so	his	total	loan
cost	will	be	 .

For	the	loan	with	points	and	monthly	payment	a2,	the	total	amount	paid	on	the	loan	will	be
the	number	of	months	times	the	monthly	payment	plus	the	points	paid:	 .
This	leads	to	a	total	loan	cost	of	 .	All	that	is	left	is	to	find	the
monthly	payment	and	total	loan	cost	in	this	case	and	compare	to	the	previous	one.	The
monthly	payment	with	an	APR	of	3.75%	is	of	course	lower,	found	by	Goal	Seek	to	be	

.	Thus	the	total	cost	of	the	loan	with	points	is	
.

Comparing	the	two	total	costs	reveals	that	Martin	could	save	nearly	$21,000	in	loan	costs
over	the	life	of	the	loan	by	paying	the	2	points	up	front.

Example	2.18	shows	that	if	the	borrower	is	going	to	keep	the	mortgage	for	the	full	30 years,
then	paying	the	points	at	the	outset	can	be	a	good	idea	if	she	has	enough	cash	to	pay	them.
However,	most	homeowners	do	not	stay	in	the	same	house	for	30 years,	and	even	if	they	do,
they	may	refinance	or	completely	pay	off	their	mortgage	at	some	point	before	the	30 years	are
up.	The	next	example	shows	that	in	such	a	case	paying	the	points	may	not	be	a	wise	decision.



Example	2.19:

Take	an	extreme	case	where	Martin	from	our	last	example	decides	to	completely	pay	off
his	mortgage	after	the	first	month.	Compare	total	loan	costs	for	the	two	loan	options.

In	the	case	of	no	points,	Martin	will	only	have	to	pay	the	first	month’s	interest	charge	on
the	loan	before	he	completely	pays	it	off.	This	interest	charge	will	equal	

.

In	the	case	of	the	second	mortgage,	Martin	has	unfortunately	already	paid	$5000	in	points
for	the	lower	rate	of	3.75%.	Thus	after	one	month	he	will	have	paid	the	points	plus	one

month’s	interest:	 .	Here	having	paid	the
points	costs	Martin	an	additional	 	on	the	loan.	Thus
paying	the	up-front	cost	of	the	points	can	work	against	the	borrower	who	decides	to	exit
the	loan	early.

In	light	of	Examples	2.18	and	2.19,	we	see	that	the	crucial	factor	in	deciding	whether	or	not	to
pay	points	is	how	long	we	plan	to	keep	the	loan.	Our	last	example	for	this	section	shows	how
to	determine	the	“break-even	time,”	that	is,	the	time	at	which	the	two	options	are	equivalent.

Example	2.20:

Determine	how	long	Martin	from	Example	2.18	must	keep	his	loan	in	order	for	paying	the
points	to	be	a	good	idea.

We	know	the	answer	lies	somewhere	between	1	and	360 months.	To	fully	answer	this
question,	we	have	to	compare	the	total	amount	paid	for	each	loan	side	by	side	up	to	time	t.
For	the	first	loan	this	is	equivalent	to	the	total	interest	paid;	for	the	second	loan	it	is	the
total	interest	plus	the	points.	What	we	need	is	an	amortization	schedule	for	each	loan,
being	careful	to	add	points	to	the	cost	of	the	second	one.

We	begin	by	adding	a	second	loan	amortization	schedule	next	to	the	original	using	all	of
the	same	formulas.	This	second	loan	will	need	a	place	for	the	user	to	enter	points	paid	and
a	place	for	the	second,	lower	APR.	We	are	still	assuming	the	purchase	price	and	the	loan
amounts	are	the	same	since	there	is	no	mention	of	a	down	payment.	Note	that	the	final
column	for	the	second	loan	includes	points	paid	along	with	total	interest	to	date	in	order
to	reflect	the	total	loan	cost	at	each	month.	This	modification	of	our	original	amortization
spreadsheet	is	shown	in	Figure	2.23.



FIGURE	2.23	Excel	amortization	model	with	points.

Once	we	have	the	amortization	schedules	for	each	loan	that	include	total	loan	cost,	we
compare	them	side	by	side	by	hiding	all	columns	we	do	not	need.	Figure	2.24	shows	the
result	of	hiding	the	columns.



FIGURE	2.24	Excel	amortization	model	comparison	of	points	versus	no	points.

We	see	that	for	the	first	few	months,	the	loan	with	no	points	has	the	lower	total	cost.	This
makes	sense	in	light	of	the	$5000	in	up-front	costs	that	the	points	require.	As	we	scroll
down,	though,	the	difference	in	cost	between	the	two	loans	shrinks	until	eventually	the
loan	with	points	becomes	cheaper.	Once	we	pass	this	point,	the	loan	with	points	increases
its	advantage	each	month	for	the	remainder	of	the	life	of	the	loan.	The	first	time	at	which
the	loan	with	points	becomes	the	better	option	is	in	month	49	as	shown	in	the	results	in
Figure	2.25.



FIGURE	2.25	Excel	total	cost	comparison	results	of	points	versus	no	points.

Thus	if	Martin	believes	that	he	will	move	or	pay	off	the	mortgage	within	the	next	4 years,
he	should	choose	the	loan	with	no	points.	However,	if	he	believes	he	will	stay	in	the
house	for	more	than	4 years,	the	loan	with	points	is	the	better	option.

In	the	next	section	we	consider	a	different	kind	of	consumer	credit:	credit	cards.

2.2.5	Section	Exercises



1.	 Choose	a	car	that	you	would	like	to	buy,	and	use	the	Internet	to	find	its	cost	and	a	source
for	current	APRs	for	car	loans.	Assume	that	you	have	to	finance	the	entire	cost	of	the	car.

Your	car	(year,	make,	and	model):	__________________________.

Price	(give	source):	_______________________________________.

Source	for	APRs:	__________________________________________.

Use	Microsoft	Excel	to	fill	in	Table	2.2.	The	table	should	show	what	your	monthly	payment
would	be	for	loans	of	each	term,	and	it	should	also	show	the	total	amount	you	paid	for	the
car.

TABLE	2.2	Investigating	the	Effect	of	Loan	Term	on	the	Monthly	Payment	and	Total
Amount	Paid	for	the	Car

Number	of	Years	to
Repay

APR Monthly	Payment
Required

Total	Amount	Paid	for
Car

3
3.5
4
4.5
5
5.5
6

2.	 Use	an	online	auto	loan	calculator	to	check	your	results	in	Exercise	.

3.	 Based	on	your	table	from	Exercise	,	fill	in	the	blanks:

a.	 As	the	length	of	the	loan	increases,	the	monthly	payment	_____________.

b.	 As	the	length	of	the	loan	increases,	the	total	amount	paid	_____________.

4.	 For	your	car	in	Exercise	,	suppose	that	you	are	able	to	make	a	down	payment	of	25%	of	the
cost	of	the	car,	and	you	finance	the	rest.	In	other	words,	you	are	now	only	borrowing	3/4	of
what	you	did	before.	Using	the	same	APRs	as	before,	fill	in	a	new	copy	of	Table	2.2.

5.	 By	making	a	down	payment	of	25%,	how	much	do	you	save	on	the	total	amount	paid	for	the
car	for	a	5-year	loan?

6.	 Extension:	You	are	about	to	purchase	a	car	that	costs	$20,000	by	taking	out	a	5-year	loan,
and	you	are	faced	with	a	choice.	The	dealer	is	offering	two	special	promotions:	(i)	you	can
get	a	rebate	of	$1000	cash	back	with	an	APR	of	3.5%,	or	(ii)	you	can	select	a	lower	APR
of	2%	but	no	rebate.

a.	 Which	special	is	the	better	choice	assuming	no	down	payment	in	both	cases?	Explain.

b.	 What	would	the	regular	APR	need	to	be	in	order	for	the	choice	to	be	a	tie?	Explain.



7.	 The	APRs	you	see	advertised	on	television	and	the	Internet	are	not	always	available	to
everyone.	Typically	these	rates	are	reserved	for	customers	who	have	excellent	credit,	and
having	a	bad	credit	score	can	increase	the	APR	you	end	up	receiving.	Suppose	you	borrow
$20,000.00	with	a	5-year	term	to	purchase	a	new	car.	Determine	how	much	additional	total
interest	you	pay	on	the	loan	for	each	additional	percentage	point	in	the	APR.	Consider
APRs	between	3	and	10%.

8.	 For	the	following	mortgage	loan	problems,	assume	a	term	of	30 years	and	a	fixed-rate
mortgage	with	an	APR	of	4.15%.

a.	 Estimate	the	gross	annual	income	you	expect	to	have	by	the	time	you	are	ready	to
purchase	a	home.	You	can	base	this	on	the	average	salary	for	your	chosen	profession.
You	can	also	base	it	on	the	assumption	of	a	joint	income	if	you	envision	having	a
partner	and	both	of	you	will	work.

b.	 As	a	(very)	general	rule	of	thumb,	you	should	be	able	to	afford	to	purchase	a	home
whose	price	is	between	3	and	5	times	your	household’s	gross	annual	salary.	For
example,	if	you	expect	an	income	of	$50,000	per	year,	you	will	likely	be	able	to	afford
a	house	that	costs	between	$150,000	and	$250,000.	Based	on	your	own	salary	estimate
and	the	range	given	above,	set	a	realistic	budget	for	your	home	purchase.

Home	price = ____________________________________

c.	 Using	www.zillow.com,	select	a	house	in	a	location	of	your	choosing	that	is	within
your	budget.	Include	a	screenshot	of	your	house	below.

d.	 Assumin`g	no	down	payment,	use	Excel	to	determine	your	monthly	PIP	for	the	loan	and
the	total	cost	of	buying	the	house.

e.	 Supply	a	screenshot	from	Excel	showing	both	the	beginning	and	end	of	the	full
amortization	schedule	for	the	loan.

f.	 Check	your	work	by	supplying	a	screenshot	from	an	online	mortgage	calculator	like	the
one	found	at	www.bankrate.com:
http://www.bankrate.com/calculators/mortgages/mortgage-calculator.aspx.

9.	 A	standard	down	payment	for	a	home	mortgage	is	20%	of	the	price	of	the	house.	Repeat
Exercises	d–f	assuming	you	make	a	down	payment	of	20%.	How	much	interest	do	you	save
by	making	the	down	payment?

10.	 Suppose	now	that	you	do	not	make	a	down	payment	but	instead	pay	2	points	to	lower	the
APR	to	3.65%.	Repeat	Exercises	d–f	under	this	scenario.

11.	 Based	purely	on	total	cost	over	the	full	30 years,	which	is	preferable:	paying	the	2	points
or	not?	(Assume	no	down	payment	in	either	case.)

12.	 How	much	total	do	you	pay	for	the	loan	with	no	down	payment	and	no	points	if	you
completely	pay	the	loan	off	after	6 months?

13.	 How	much	total	do	you	pay	for	the	loan	with	no	down	payment	and	2	points	if	you

http://www.zillow.com
http://www.bankrate.com
http://www.bankrate.com/calculators/mortgages/mortgage-calculator.aspx


completely	pay	the	loan	off	after	6 months?

14.	 If	you	pay	each	loan	off	(with	points	or	without	points)	after	6 months,	which	was	the	better
choice?

15.	 At	what	point	would	paying	each	loan	off	completely	result	in	equal	costs	between	paying
no	points	and	paying	2	points?

2.3	CREDIT	CARDS
Credit	cards	are	a	wonderfully	convenient	way	to	pay	for	goods	and	services,	particularly
when	purchasing	over	the	Internet.	For	some	transactions	such	as	renting	a	car,	credit	cards	are
virtually	indispensable.	If	selected	and	used	carefully,	they	can	even	provide	real	financial
benefits	in	the	form	of	cash	back	rewards	or	travel	points.	The	catch	is	that	credit	cards	can	be
fantastically	expensive	if	even	slightly	mishandled,	and	a	case	can	be	made	that	credit	card
companies	try	to	make	it	as	easy	as	possible	for	the	consumer	to	do	so.	If	mishandled	or
abused	habitually,	they	can	also	negatively	impact	one’s	credit	report,	which	in	turn	can	result
in	thousands	of	dollars	in	extra	costs	for	transactions	that	would	seem	to	be	completely
unrelated,	for	example,	by	having	to	pay	a	higher	interest	rate	on	a	home	mortgage	loan.

Each	time	a	credit	card	is	used	for	a	purchase,	the	user	is	taking	out	a	loan	from	the	credit	card
company	or	bank	that	provided	the	card.	When	signing	up	for	the	card,	the	consumer	agrees	to
pay	back	these	loans	in	a	timely	fashion,	and	the	consequences	of	not	doing	so	vary	in
important	ways	from	card	to	card.	The	great	benefit	of	these	day-to-day	loans	is	that	they	are	a
very	safe,	convenient	way	to	pay	for	things	and	they	usually	carry	what	is	called	a	grace
period.	The	grace	period	is	the	amount	of	time	the	user	has	to	pay	back	the	charges	before	the
company	starts	charging	interest	or	fees.	The	grace	period,	however,	applies	only	if	the
balance	is	paid	in	full	every	month	before	the	grace	period	expires.	It	is	when	the	balance	is
not	completely	paid	off	that	things	can	turn	ugly.

The	TILA	of	1968	was	an	important	piece	of	legislation	for	the	protection	of	consumers
seeking	credit.	Since	then	the	prevalence	of	credit	cards	and	the	abusive	tactics	employed	by
some	credit	card	companies	led	to	another	important	piece	of	legislation,	the	Credit	CARD
Act	of	2009.	This	act	places	important	limits	on	credit	card	issuers	and	the	ways	they	can
charge	consumers,	and	it	provides	important	protections	for	consumer	rights.	In	the	following
we	take	a	look	at	the	ways	credit	card	companies	make	money	from	consumers,	and	we
examine	the	effects	of	the	CARD	Act	on	these	practices.

2.3.1	The	Schumer	Box
The	Schumer	Box	is	named	for	New	York	Senator	Charles	Schumer	who	as	a	member	of	the
House	of	Representatives	was	responsible	for	enacting	an	amendment	to	the	TILA	in	1988.
This	amendment	is	known	as	the	Fair	Credit	and	Charge	Card	Disclosure	Act,	and	it	required
credit	card	issuers	to	spell	out	all	fees	and	terms	for	any	credit	card	solicitation	in	a
straightforward,	easy-to-read	format.	“Schumer	Box”	is	the	name	given	to	the	tabular	format	of
these	disclosures.	Here	we	provide	an	example	of	a	Schumer	Box	for	a	credit	card,	and	we



discuss	what	each	part	of	the	disclosure	means.	Table	2.3	shows	an	example	of	a	Schumer
Box.

TABLE	2.3	Example	of	a	Schumer	Box

Interest	Rates	and	Interest	Charges
Annual	percentage	rate
(APR)	for	purchases

Introductory	rate	of	0%	for	6 months
Nonintroductory	rate	of	19.9%
APR	may	vary	with	changes	in	the	prime	rate

APR	for	balance	transfers Introductory	rate	of	0%	for	6 months
Nonintroductory	rate	of	19.9%
APR	may	vary	with	changes	in	the	prime	rate

APR	for	cash	advances 25.9%
APR	may	vary	with	changes	in	the	prime	rate

Penalty	APR 29.9%
Penalty	APR	may	be	applied	if	a	payment	is	late	and	may	apply
indefinitely	from	that	point	forward.
APR	may	vary	with	changes	in	the	prime	rate

Grace	period	for	new
purchases

25	days	from	end	of	billing	cycle

Minimum	interest	charge $0.50
Fees
Annual	fee $0.00
Balance	transfer	fee 3%	of	the	transfer	amount
Cash	advance	fee $10.00	or	3%,	whichever	is	greater
Foreign	purchase
transaction	fee

None

Late	payment $35.00
Returned	payment $35.00
Things	You	Should	Know	about	the	Card
How	balances	are
calculated

Average	daily	balance	method	(including	new	transactions)

Can	the	account	terms	be
changed?

Yes,	as	permitted	by	law

The	list	below	is	a	brief	overview	of	some	important	terms	and	potential	differences	in	the
way	credit	cards	work.	These	are	all	ways	that	credit	card	companies	can	legally	separate



users	from	their	money,	and	the	specific	terms	must	be	disclosed	in	the	credit	card	agreement.
We	will	discuss	most	of	them	in	detail,	but	credit	card	companies	think	of	new	ways	to	charge
consumers	all	the	time	so	the	list	should	not	be	considered	exhaustive:

APR	for	purchases:	This	line	discloses	the	interest	rate	or	finance	charge	assessed	if	the
balance	is	not	paid	in	full	by	the	payment	due	date.	Note	that	the	disclosure	includes	an
introductory	rate	(which	will	be	prevalent	in	any	advertising	for	the	card)	as	well	as	what
the	real	rate	will	be	once	the	introductory	rate	expires.	The	real	rate	is	given	as	19.9%
here	but	will	sometimes	depend	on	the	user’s	creditworthiness.	Note	also	that	the	APR
“may	vary	with	the	market	based	on	the	Prime	Rate.”	This	means	that	if	interest	rates	rise
in	general,	so	will	the	rate	on	the	card.

APR	for	transfers:	This	line	discloses	the	interest	rate	the	user	will	pay	(after	the
introductory	period)	for	credit	card	balances	transferred	from	another	card.

APR	for	cash	advances:	This	line	discloses	the	interest	rate	the	user	will	pay	if	the	card	is
used	to	get	cash.	Note	that	the	rate	is	extremely	high—25.9%	(and	it	can	go	higher	if
interest	rates	rise).	This	is	typical	of	credit	card	cash	advance	rates.	It	is	almost	never	a
good	idea	to	use	a	credit	card	to	get	cash.

Penalty	APR:	This	line	discloses	the	maximum	APR	that	the	card	issuer	can	charge	the	user
and	gives	the	conditions	under	which	it	can	do	so.	Note	that	any	late	payment	can	trigger
the	penalty	rate	of	29.4%	and	that	once	triggered,	the	rate	change	can	be	permanent.

Grace	period:	This	line	notes	how	long	the	user	has	to	pay	the	balance	in	full	before	the
user	incurs	finance	charges.	The	25 days	referred	to	here	is	known	as	the	grace	period.
Note	that	the	grace	period	only	applies	to	new	purchases—balance	transfers	and	cash
advances	incur	finance	charges	starting	on	the	day	they	are	made.

Minimum	interest	charge:	This	line	states	that	if	any	interest	at	all	is	due,	then	the	user	will
be	charged	at	least	$0.50	in	interest.

Annual	fee:	The	annual	fee	is	a	fee	charged	simply	for	using	the	card.	This	agreement
specifies	that	this	card	has	no	annual	fee.	It	is	generally	not	difficult	to	find	credit	cards
with	no	annual	fee,	but	rewards	cards	(e.g.,	cars	that	give	you	cash	back	or	airline	miles)
often	have	them.

Transaction	fees:	Certain	types	of	uses	for	credit	cards	incur	fees	in	addition	to	any	finance
charges.	This	line	discloses	those	fees.	We	see	that	this	card	will	charge	the	user	3%	for
any	balance	transfers	and	the	larger	of	3%	and	$10.00	for	any	cash	advance.	If	a	consumer
used	this	card	to	take	out	a	$20.00	cash	advance,	that	user	would	be	charged	a	$10.00	fee,
and	the	total	charge	of	$30.00	for	the	transaction	would	immediately	incur	the	cash
advance	APR	of	25.9%,	compounded	daily.	On	the	plus	side,	this	card	does	not	charge	a
fee	for	foreign	transactions,	so	it	would	be	a	good	card	to	use	for	foreign	travel.	Foreign
transaction	fees	are	common	and	are	typically	2–3%.

Penalty	fees:	These	are	fees	the	user	must	pay	for	not	abiding	by	the	card	agreement.	This
card	charges	$35.00	for	any	late	payment	(in	addition	to	triggering	the	penalty	APR)	or	any



returned	payment.	There	is	no	fee	for	going	over	the	credit	limit,	which	is	the	maximum
balance	the	card	allows.

How	we	will	calculate	balances:	There	are	four	common	ways	for	credit	card	issuers	to
calculate	finance	charges	and	balances,	and	this	line	specifies	which	one	the	card	uses.
Here	it	is	the	average	daily	balance	(ADB)	(including	new	transactions)	method.	We
will	discuss	this	method	later	in	the	section.

Can	the	account	terms	be	changed?:	Like	all	credit	cards,	the	terms	for	this	card	can	change
within	the	bounds	set	by	the	law.	In	particular	the	card	issuer	must	give	at	least	45 days’
written	notice	and	inform	the	user	of	their	right	to	opt	out	of	the	changes	by	closing	the
account.

Though	the	Schumer	Box	is	a	useful	tool	for	quickly	understanding	the	main	costs	associated
with	a	credit	card,	there	are	things	it	does	not	include,	and	consumers	should	still	read	and
understand	the	full	agreement	before	signing	up	for	a	card.	An	important	part	of	many	card
agreements	that	is	not	presented	in	the	Schumer	Box	is	specific	information	about	any	rewards
program	the	card	offers.

2.3.2	The	Credit	CARD	Act
In	2009	an	amendment	to	the	TILA	was	passed.	The	Credit	Card	Accountability	Responsibility
and	Disclosure	Act,	also	known	as	the	Credit	CARD	Act,	provided	many	new	and	important
consumer	protections	(Prater,	2012).	For	the	full	text	of	the	act,	the	reader	is	referred	to	the
Credit	CARD	Act	(2009).

Below	we	highlight	some	of	the	changes	brought	about	by	the	Credit	CARD	Act:

The	card	issuer	must	notify	the	user	at	least	45 days	in	advance	of	any	significant	changes
to	terms	of	the	agreement.	The	cardholder	may	opt	out	of	the	changes	during	this	45-day
period	by	closing	the	account	and	paying	off	any	remaining	balance	under	the	original
agreement.

Limits	on	changes	in	the	APR:	Unless	the	increase	occurs	due	to	the	expiration	of	an
introductory	rate	or	the	APR	is	tied	to	a	variable	rate,	the	APR	for	new	transactions	cannot
be	raised	within	the	first	year	of	issuance.	Exceptions	are	increases	due	to	at	least	two
consecutive	late	payments,	but	the	issuer	must	give	45 days’	notice	of	such	an	increase.

Notice	of	universal	default:	Universal	default	is	a	practice	of	some	card	issuers	where
they	will	raise	the	APR	on	a	card	for	seemingly	unrelated	transactions	by	the	user.	For
example,	a	card	issuer	might	raise	the	APR	on	a	card	if	the	cardholder	misses	payments	on
her	electric	bill.	Card	issuers	must	now	provide	the	cardholder	45 days’	notice	of	this
change.	The	use	of	universal	default	by	a	card	issuer	must	be	disclosed	in	the	card
agreement,	and	it	is	something	to	consider	when	shopping	for	a	card.

Fee	limits:	Overlimit	fees	are	no	longer	standard	practice.	Unless	the	card	user	chooses	to
have	overlimit	fees	in	exchange	for	more	spending	flexibility,	transactions	in	excess	of	the
card	limit	will	simply	be	rejected.	If	there	are	overlimit	fees,	they	cannot	exceed	the



amount	that	the	user	goes	over	their	credit	limit.	For	example,	a	user	who	exceeds	their
limit	by	$5.00	can	no	longer	be	hit	with	a	$25.00	fee—that	fee	would	now	be	capped	at
$5.00.	Late	fees	for	occasional	late	payments	are	now	capped	at	$25.00.

Minimum	payment	disclosures:	The	minimum	payment	is	the	least	the	user	can	pay	on	a
card	while	still	avoiding	late	fees.	Rules	for	calculating	the	minimum	payment	will	appear
on	the	card’s	monthly	statement	and	will	vary	depending	on	the	card	issuer.	In	general
credit	card	companies	would	like	nothing	better	than	for	the	user	to	only	make	the	minimum
payment	each	month	because	they	are	then	able	to	charge	interest	on	the	remaining	balance.
To	ensure	cardholders	understand	how	detrimental	only	making	the	minimum	payment	can
be,	card	issuers	are	now	required	to	report	how	long	it	will	take	users	to	pay	off	their
balance	if	they	only	make	the	minimum	payment	each	month.

Elimination	of	two-cycle	billing:	In	the	past	if	a	cardholder	failed	to	pay	off	a	balance	in
full	by	the	payment	due	date,	some	card	issuers	would	not	only	charge	interest	on	the
current	balance,	but	they	would	also	charge	interest	retroactively	on	the	previous	month’s
balance	even	if	that	balance	had	been	paid	in	full.	This	is	now	illegal.

How	payments	are	applied:	Suppose	a	user	has	a	balance	of	$1000.00	on	a	card,	where
$500.00	is	from	new	purchases	and	$500.00	is	from	cash	advances.	The	APR	for
purchases	is	lower	than	for	cash	advances,	say,	15%	for	purchases	and	25%	for	cash
advances.	In	the	past	if	this	user	sent	in	a	payment	of	$500.00,	that	payment	would	be	put
toward	the	lower	APR	balance	first	so	that	he	would	still	owe	$500.00	but	at	25%.	Now
any	payments	(above	the	minimum)	by	law	must	be	applied	to	high	APR	balances	first.

The	first	mandatory	biennial	review	of	the	effects	of	the	Credit	CARD	Act	by	the	Consumer
Financial	Protection	Bureau	(CFPB)	was	completed	in	2013	(CFPB,	2013).	We	conclude	our
discussion	of	the	CARD	Act	by	including	an	excerpt	from	the	executive	summary	of	this	report
below.



The	CARD	Act	has	impacted	the	way	that	consumers	pay	for	credit	in	the	credit	card
marketplace	and	has	significantly	enhanced	transparency	for	consumers.	Over-limit	fees	and
repricing	actions	have	been	largely	eliminated;	those	effects	can	be	directly	traced	to	the
Act.	The	dollar	amount	of	late	fees	is	down	as	well,	and	the	CARD	Act	directly	caused	this
reduction.

The	end	result	is	a	market	in	which	shopping	for	a	credit	card	and	comparing	costs	is	far
more	straightforward	than	it	was	prior	to	enactment	of	the	Act.	Many	credit	card	agreements
have	become	shorter	and	easier	to	understand,	though	it	is	not	clear	how	much	of	these
changes	can	be	attributed	directly	to	the	CARD	Act	since	it	did	not	explicitly	mandate
changes	to	the	length	and	form	of	credit	card	agreements.	Limitations	on	“back-end”	fees,
along	with	restrictions	on	an	issuer’s	ability	to	raise	interest	rates,	have	simplified	a
consumer’s	cost	calculations.	Credit	card	costs	are	now	more	closely	related	to	the	clearly
disclosed	annual	fees	and	interest	rates.	This	greater	transparency	means	a	consumer
deciding	whether	to	charge	a	purchase	can	now	make	that	decision	with	far	more
confidence	that	costs	will	be	a	function	of	the	current	interest	rate	rather	than	some	yet-to-be
determined	interest	rate	that	could	be	reassessed	at	any	time	and	for	any	reason	by	the
issuer.

2.3.3	Calculating	Finance	Charges
An	important	difference	between	credit	card	interest	and	the	interest	on	an	auto	or	mortgage
loan	is	that	credit	card	interest	is	typically	compounded	daily,	not	monthly.	Recall	that	if	an
interest	rate	is	compounded	monthly,	it	means	that	1/12th	of	the	APR	is	charged	each	month	in
interest.	Similarly,	if	an	interest	rate	is	compounded	daily,	1/365th	of	the	APR	is	charged	each
day.	We	illustrate	the	change	with	an	example.

Example	2.21:

Suppose	that	the	APR	on	a	credit	card	is	15%;	find	the	interest	charge	on	a	balance	of
$500.00	carried	for	one	day.

The	daily	interest	rate	is	 .	If	the	account	balance	at	the	end	of	the	day	is
$500,	the	card	account	would	be	charged	 ,	or	21¢	in	daily
interest.	That	21¢	would	be	then	be	added	to	the	balance,	and	at	the	beginning	of	the
following	day,	the	balance	would	be	$500.21.	If	no	payments	are	made,	the	entire	balance
of	$500.21	is	subject	to	the	daily	rate	at	the	end	of	the	next	day.

Before	concluding	that	$0.21	is	not	so	bad,	we	should	remember	that	the	charge	is	only	for
a	single	day	and	that	the	effects	of	compounding,	especially	daily	compounding,	can	be
dramatic	over	long	time	periods.

Different	cards	compute	finance	charges	in	different	ways,	and	these	differences	make	it	more



difficult	to	compare	credit	card	offers	side	by	side	even	when	they	carry	the	same	APR.	The
four	most	commonly	cited	methods	are	the	daily	balance	method,	the	ADB	method,	the
previous	balance	method,	and	the	adjusted	balance	method.	The	daily	balance	and	ADB
methods	can	include	or	exclude	new	transactions,	though	most	cards	include	them.	When	a
credit	card	uses	daily	compounding,	the	daily	balance	and	ADB	methods	are	exactly
equivalent,	and	there	is	only	a	very	slight	difference	if	the	card	using	the	ADB	method	uses
monthly	compounding.	In	general	the	adjusted	balance	method	is	best	for	card	users,	though
cards	that	use	it	appear	to	be	rare.	Which	method	a	card	uses	and	how	it	works	are	disclosed
in	the	user	agreement.

By	far	the	most	common	methods	are	the	daily	balance	and	the	ADB	methods	(both	with	new
transactions).	Later	we	develop	a	spreadsheet	model	to	calculate	finance	charges	for	these
methods,	and	in	the	process	we	show	that	they	are	in	fact	equivalent.

Since	purchases,	balance	transfers,	and	cash	advances	all	typically	carry	different	APRs,
finance	charges	for	each	type	of	transaction	are	treated	separately.	We	show	how	to	calculate
finance	charges	for	purchases	and	note	that	the	model	we	create	will	work	for	transfers	and
cash	advances	as	well,	we	just	need	to	update	the	APR	to	handle	each	case.	Total	finance
charges	on	a	credit	card	bill	are	found	by	adding	together	the	finance	charges	for	each	class	of
transaction.

Suppose	we	fail	to	pay	off	our	card	balance	in	full	by	the	due	date.	We	made	a	payment,	so	we
do	not	incur	a	late	fee,	just	not	a	large	enough	payment	to	pay	off	the	card.	Our	balance	is	now
subject	to	daily	finance	charges,	and	our	balance	each	day	is	determined	as	follows:

1.	 Our	initial	daily	balance	is	our	balance	on	the	first	day	of	the	billing	cycle,	which	is	the
time	period	(usually	30	or	31	days)	covered	by	our	billing	statement.	This	balance	is
calculated	as	the	unpaid	balance	from	our	previous	bill,	plus	any	new	purchases	minus	any
new	payments	that	post	on	the	first	day.

2.	 On	any	other	day	the	daily	balance	is	found	to	be	the	previous	daily	balance,	plus	the

finance	charge	on	that	balance	 ,	plus	any	new	purchases	on	that
day,	minus	any	new	payments	on	that	day.

Since	purchases	and	finance	charges	serve	to	increase	our	balance,	we	represent	them	as
inward-pointing	arrows	on	our	flow	diagram.	Payments,	which	serve	to	decrease	the	amount
we	owe,	are	represented	by	an	outward-pointing	arrow.	With	the	APR	denoted	by	r,	the	flow
diagram	is	given	in	Figure	2.26.



FIGURE	2.26	Flow	diagram	for	credit	card	model	using	daily	balance	method	for	finance
charges.

If	we	let	B(t)	be	the	daily	balance	for	day	t,	then	our	DDS	can	be	written	as

In	other	words,	“The	new	daily	balance	is	the	previous	daily	balance,	plus	the	interest	on	that
balance,	plus	new	purchases,	minus	new	payments.”	Both	the	new	flow	diagram	and	the	DDS
are	slightly	different	than	the	other	examples	we	have	seen	because	new	purchases	and
payments	do	not	occur	regularly.	Instead	we	understand	the	diagram	and	DDS	to	mean	that	any
day	on	which	there	is	a	new	purchase	or	payment,	we	add	or	subtract	it	from	the	daily	balance
accordingly.

Next	we	give	an	example	of	how	the	daily	balance	method	works	using	Excel.

Example	2.22:

The	credit	card	we	examine	is	the	Chase	Bank	Freedom	Visa,	which	specifies	in	its	user
agreement	(CFPB,	2015)	that	it	uses	the	daily	balance	method	for	computing	finance
charges.	We	use	an	APR	for	new	purchases	of	15.99%,	which	is	in	the	range	specified	in
the	agreement.	Suppose	that	we	were	not	able	to	pay	off	our	balance	completely	and	that
we	carried	a	balance	of	$500.98	from	the	last	billing	cycle	to	the	current	one.	Suppose
also	that	the	current	billing	cycle	covers	the	dates	March	7	through	April	6,	inclusive.	Our
account	activity	during	the	current	billing	cycle	is	as	follows:

On	March	10	we	charged	$57.63	for	groceries.

On	March	15	we	charged	$35.06	for	gas.

On	March	15	we	charged	$12.56	at	a	restaurant.

On	March	30	we	charged	$87.54	for	car	repairs.

On	March	30	we	made	a	payment	of	$100.00.

On	April	6	we	charged	$47.88	for	our	electric	bill.

Answer	the	following	questions:



1.	 What	will	be	the	total	amount	of	finance	charges	we	will	incur	this	month?

2.	 What	will	be	the	new	balance	owed	on	our	next	statement?

E.8	The	SUM	Command	and	Working	with	Dates

In	this	Excel	section	we	show	how	to	quickly	find	the	sum	of	a	large	range	of
numbers	using	Excel’s	SUM	command.	We	also	take	advantage	of	Excel’s	date
format.

We	set	up	an	Excel	credit	card	spreadsheet	model	that	will	compute	finance	charges
for	us	using	the	daily	balance	method.	The	end	result	will	be	a	spreadsheet	a
consumer	can	use	to	easily	verify	the	information	contained	in	his	or	her	own	credit
card	statement.

What	makes	implementing	this	DDS	with	a	spreadsheet	different	and	more
complicated	than	our	previous	examples	is	that	the	purchases	and	payments	will	not
be	the	same	from	day	to	day.	Instead	of	treating	them	as	single	parameters,	we	need	to
set	up	our	spreadsheet	so	that	the	user	can	enter	new	purchases	or	payments	manually
for	each	day	of	the	billing	cycle.	(Note	that	this	is	similar	to	the	crane	problem	in	the
exercises	where	we	had	a	different	stocking	number	each	year.)

We	store	the	new	purchase	APR	and	the	balance	carried	over	from	the	previous
billing	cycle	as	parameters	in	their	own	cells,	and	we	create	columns	for	the	time,
daily	balance,	new	purchases,	and	payments.	We	also	add	a	column	for	the	daily
finance	charges	so	we	can	easily	keep	track	of	them.	Figure	2.27	gives	a	screenshot
of	the	setup.



FIGURE	2.27	Excel	credit	card	model	setup	for	daily	balance	method.

Next	we	enter	formulas	for	the	daily	balance	as	well	as	for	each	day’s	finance	charge.
There	is	no	formula	for	purchases	and	payments	because	those	occur	at	irregular
intervals.	The	formula	version	of	our	spreadsheet	is	shown	in	Figure	2.28.

FIGURE	2.28	Excel	credit	card	daily	balance	model	with	formulas	displayed.

Note	that	we	have	to	handle	the	initial	daily	balance	in	a	slightly	different	way	since
it	is	based	on	the	balance	carried	over	from	the	last	billing	cycle.

Instead	of	numbers	we	want	the	time	column	to	keep	track	of	actual	dates	in	our
billing	cycle.	We	can	arrange	this	by	typing	the	date	“March	7,	2015,”	into	the	cell	for

	and	recopying	the	formula	down	to	the	date	April	6.	All	that	remains	is	to	enter
each	purchase	and	payment	on	the	correct	date.	A	portion	of	the	complete	spreadsheet
is	given	in	Figure	2.29.



FIGURE	2.29	Excel	credit	card	model	setup	for	Example	2.22.

In	order	to	answer	the	first	question	in	the	example,	we	need	to	find	the	total	finance
charge	for	our	next	bill;	thus,	we	need	to	add	up	all	of	the	daily	finance	charges	for
the	entire	billing	cycle.	We	could	do	this	by	entering	a	long	formula,	but	fortunately
Excel’s	SUM	function	will	accomplish	this	more	easily.	First	we	choose	a	cell	at	the
top	of	our	spreadsheet	where	we	will	store	the	total	finance	charge.	Click	in	that	cell,
type	“=SUM(E7:E37),”	and	then	press	enter.	This	command	tells	Excel	to	add	the
contents	of	all	cells	between	E7	and	E37,	inclusive.	The	result	is	the	finance	charge
total	we	seek.

We	can	also	access	the	SUM	command	from	Excel’s	Home	tab.	Click	the	Autosum
drop-down	menu	from	the	Editing	group	and	select	SUM.	Excel	will	highlight	the
range	it	thinks	is	appropriate,	but	if	this	is	not	the	desired	range,	we	can	select	the
correct	one	by	using	the	thick	cross	pointer	to	highlight	it.	Figure	2.30	shows	the
updated	Excel	spreadsheet	with	the	total	finance	charge	formula	displayed.



FIGURE	2.30	Excel	daily	balance	model	with	total	finance	charge	formula
displayed.

The	answer	to	question	1	is	$8.02,	and	we	answer	question	2	by	adding	the	last	daily
balance	in	the	billing	cycle,	namely,	$649.38,	to	the	last	finance	charge,	$0.28.	The
result	will	be	the	amount	owed	on	the	next	monthly	statement:	$649.66.

Next	we	show	that	for	daily	compounding,	the	ADB	method	of	calculating	finance	charges	will
give	the	same	result	as	the	daily	balance	method.	First	we	note	the	ADB	method	using	daily
compounding	calculates	the	daily	balance	in	the	same	way.	Once	we	have	all	of	the	daily
balances,	we	proceed	as	follows:

1.	 Compute	the	ADB	over	the	billing	cycle.	This	requires	that	we	add	up	all	of	the	daily
balances	and	then	divide	by	the	number	of	days	in	the	billing	cycle.

2.	 Once	we	have	the	ADB,	we	multiply	the	average	by	the	daily	rate:	 .	Finally	we

multiply	the	result	by	the	number	of	days	in	the	billing	cycle:	 .



Example	2.23:

Show	that	in	Example	2.22	the	ADB	method	would	yield	the	same	finance	charge	as	the
daily	balance	method.

E.9	The	AVERAGE	and	COUNT	Commands

Finding	the	average	of	all	of	our	daily	balances	is	done	most	efficiently	with	Excel’s
AVERAGE	function.	This	function	computes	the	average	of	all	values	in	a	range
specified	by	the	user.	Like	the	SUM	command,	it	must	be	preceded	by	an	equals	sign,
and	the	user	can	either	type	the	initial	and	final	values	in	the	range	separated	by	a
colon	or	the	user	can	select	“Average”	from	the	Autosum	drop-down	menu	and	select
the	range	with	the	thick	cross	pointer.	Figure	2.31	shows	the	formula	required.

FIGURE	2.31	Formula	for	average	daily	balance.

Once	we	have	the	ADB,	we	need	to	multiply	it	by	our	daily	rate	and	the	number	of
days	in	the	billing	cycle.	Since	the	number	of	days	in	the	billing	cycle	will	vary	with
the	month,	we	let	Excel	keep	track	by	simply	counting	the	number	of	days	on	our
spreadsheet.	The	Excel	COUNT	function	is	also	found	in	the	Autosum	drop-down
menu,	and	it	counts	the	number	of	numerical	entries	in	a	given	range.	Thus	the	total
finance	charge	using	the	ADB	method	will	be	calculated	by	the	formula	shown	in	the
screenshot	in	Figure	2.32.	We	note	that	the	result	is	exactly	the	same	as	it	was	for	the
daily	balance	method.

FIGURE	2.32	Total	finance	charge	based	on	average	daily	balance.

Though	the	total	finance	charge	can	be	computed	without	knowing	the	ADB,	we	note	that	some



credit	cards	use	the	ADB	to	compute	the	required	minimum	payment	each	month.	Thus	for
these	cards,	it	is	still	necessary	to	compute	the	ADB.
Our	last	example	for	this	section	examines	the	calculation	of	the	minimum	payment.

Example	2.24:

Find	the	minimum	payment	for	the	outstanding	balance	in	Example	2.22	if	the	rule	is	4%
of	the	average	daily	balance	or	$25.00,	whichever	is	larger.

E.10	The	MAX	Command

The	Excel	command	for	choosing	the	larger	of	two	numbers	is	the	MAX	command,
and	the	syntax	for	it	is	“=MAX(number1,number2).”	We	want	to	take	the	larger	of
$25.00	and	4%	of	$590.47;	the	formula	is	shown	in	Figure	2.33.	Observe	that	the
minimum	payment	on	the	next	statement	balance	will	be	$25.00.

FIGURE	2.33	Calculation	of	the	minimum	payment.

2.3.4	Section	Exercises

For	the	following	exercises,	use	the	credit	card	with	terms	given	in	the	abbreviated	Schumer
Box	in	Table	2.4.



TABLE	2.4	Schumer	Box	for	Section	2.3	Exercises

Interest	Rates	and	Interest	Charges
APR	for	purchases 18.9%
APR	for	balance	transfers 21.9%
APR	for	cash	advances 24.9%
Penalty	APR 28.9%
Grace	period 25	days	from	end	of	billing	cycle
Minimum	interest	charge $1.00
Fees
Annual	fee $45.00
Balance	transfer	fee $10.00	or	4%,	whichever	is	greater
Cash	advance	fee $10.00	or	5%,	whichever	is	greater
Foreign	purchase	transaction	fee None
Late	payment $35.00
Returned	payment $35.00

1.	 Suppose	you	took	out	a	$25,000	car	loan	for	a	term	of	60 months	using	this	credit	card’s
cash	advance	APR	as	the	APR	for	the	car	loan.	How	much	in	total	would	that	car	end	up
costing	you?

2.	 Suppose	you	take	out	a	cash	advance	of	$40.00	using	this	credit	card	and	do	not	pay	it	off
for	2 years.	How	much	in	total	would	that	$40.00	end	up	costing	you?	(For	simplicity,
assume	no	other	charges	or	payments	are	made	to	your	card	over	the	2-year	period.)

3.	 Suppose	you	transfer	a	balance	of	$1200	from	another	credit	card	to	this	one.	Assuming
you	make	no	other	payments	or	transfers,	how	much	would	you	owe	at	the	end	of	one
month?

4.	 Use	the	daily	balance	method	for	computing	finance	charges	to	answer	the	following.
Suppose	your	balance	from	your	last	credit	card	statement	was	$1000.00.	You	charge
$34.35	for	groceries	on	March	12,	$21.04	for	gas	on	March	24,	and	$25.00	for	an	iTunes
gift	card	on	April	1.	You	also	make	a	payment	of	$500.00	on	April	2.	Assume	that	you	have
not	been	paying	your	balance	in	full	each	month	so	that	you	do	incur	finance	charges	and
that	the	billing	cycle	runs	from	March	7	to	April	6.

a.	 What	will	be	the	total	finance	charges	on	your	next	billing	statement?

b.	 What	will	be	the	total	you	owe	on	your	next	billing	statement?

c.	 What	will	be	the	minimum	payment	due	on	your	next	billing	statement	if	the	rule	is	“4%
of	your	outstanding	balance	or	$75.00,	whichever	is	higher?”



2.4	THE	TIME	VALUE	OF	MONEY:	PRESENT	VALUE
Present	value	is	a	fundamental	concept	in	finance,	and	it	is	defined	to	be	the	value	today	of	a
future	payment	or	payments.	Finding	the	present	value	allows	us	to	make	fair	comparisons
among	different	payment	options	and	hence	to	make	decisions	about	what	option	is	best	for	us.
For	example,	which	is	the	better	offer—a	guaranteed	payment	of	$200.00	one	year	from	today
or	a	guaranteed	payment	of	$500.00	ten	years	from	today?	We	should	not	automatically	opt	for
the	$500.00	just	because	it	is	the	larger	amount.	Perhaps	if	we	took	the	$200	one	year	from
today	and	invested	it,	we	would	end	up	with	more	than	$500	nine	years	later.	If	that	were	the
case,	then	the	$200	one	year	from	today	would	be	the	better	choice	because	we	could	put	it	to
work	earning	interest	for	9 years.	What	we	need	is	a	way	of	comparing	future	payment	options
that	takes	the	availability	of	compound	interest	into	account.	Present	value	provides	a	way	of
doing	this.

2.4.1	Present	Value	of	Regular	Payments
The	idea	of	present	value,	that	we	can	view	future	payments	as	having	an	equivalent,
discounted	value	if	they	were	made	today,	takes	some	getting	used	to.	We	start	with
considering	an	example	of	a	single	payment;	then	we	move	on	to	multiple	payments	of	a
constant	amount.



Example	2.25:

Assuming	that	we	have	access	to	a	savings	account	that	earns	4%	interest	compounded
annually,	compute	the	present	value	of	a	guaranteed	payment	of	$500.00	to	be	made	to	us
3 years	from	today.

Another	way	of	stating	this	question	is	to	ask:	“How	much	money	would	I	need	to	deposit
into	my	account	today	in	order	for	it	to	accumulate	to	$500.00	at	the	end	of	3 years?”	We
know	how	savings	accounts	(without	regular	deposits)	grow	already;	for	reference	the
explicit	formula	is	repeated	below:

Finding	the	present	value	of	our	promised	$500.00	is	now	a	matter	of	finding	the	initial
deposit	required.	In	other	words,	find	B(0)	such	that	 .	We	show	the	required
algebra	below:

We	have	found	that	the	present	value	of	a	$500.00	payment	that	would	occur	3 years	from
today	is	$444.50,	assuming	we	can	earn	4%	interest	during	that	time.	Another	way	to	view
our	result	is	that	mathematically	speaking,	there	is	no	difference	between	an	offer	of
$444.50	today	and	an	offer	of	$500.00	three	years	from	today.	They	are	equivalent,
provided	our	assumption	about	the	interest	rate	is	valid.

As	the	previous	example	demonstrates,	there	is	not	really	a	unique,	definitive	present	value	for
a	future	payment—it	always	depends	on	the	interest	rate	we	assume.	If	our	assumption	about
the	interest	rate	changes,	then	so	will	the	present	value	of	any	future	payment.

Suppose	that	instead	on	one	future	payment,	we	want	to	know	the	present	value	of	a	series	of
regular	future	payments.	In	this	case	the	concept	and	the	computations	are	a	little	more	difficult.



Example	2.26:

Find	the	present	value	of	a	series	of	10	annual	payments	of	$400.00	beginning	1 year	from
today.	Assume	that	we	could	earn	5%	interest	compounded	annually	during	this	time.

We	wish	to	find	the	amount	of	money	we	would	need	to	deposit	into	an	account	today	that
would	exactly	generate	our	10	annual	payments	of	$400.00.	In	other	words,	how	much	do
we	need	to	start	with	so	that	we	could	make	10	annual	$400	withdrawals	and	end	up	with
a	balance	of	zero	after	the	10th	one?	The	presence	of	regular	withdrawals	from	our
account	requires	the	use	of	the	explicit	formula	given	by

Here	a	is	the	annual	withdrawal,	so	 ,	r	is	the	assumed	interest	rate	of	5%,	t
is	10 years,	and	B(0)	is	the	initial	balance	that	we	seek.	Since	we	require	the	account	to
be	empty	after	the	10th	payment,	we	must	have	that	 .	We	plug	in	all	of	our	known
values	and	solve	for	B(0):

Thus	the	present	value	of	10	future	payments	of	$400.00	is	$3088.70,	assuming	we	could
earn	5%	interest.	Note	that	this	number	is	quite	a	bit	less	than	the	face	value	of	all	of	the
payments:	 .	This	is	again	due	to	present	value	accounting	for	not
just	the	face	value	of	money	but	the	time	value	of	money	as	well:	future	payments	are	not
worth	as	much	to	us	as	payments	made	today	because	of	the	availability	of	interest.

We	note	that	we	can	also	work	the	previous	example	with	Excel.	The	work	is	mathematically
equivalent	to	paying	off	a	loan	balance	where	we	know	the	payment	and	the	term	but	not	the
initial	loan	amount.

Example	2.27:

Rework	Example	2.26	using	Excel.

After	only	superficial	modifications	to	the	loan	spreadsheet,	we	have	the	setup	shown	in



Figure	2.34.

FIGURE	2.34	Excel	model	for	present	value	of	regular	payments.

We	have	stored	a	stand-in	value	of	$5000	for	the	present	value.	The	initial	balance	in	cell
B8	refers	to	the	cell	where	we	store	the	present	value,	C5.	Note	that	because	we	are	using
annual	compounding,	the	interest	rate	is	unmodified	in	the	balance	formula.	Finally,	we
have	hidden	most	of	the	rows	that	we	do	not	need	to	see.

We	Goal	Seek	on	the	present	value	that	would	make	the	account	balance	equal	to	0	at	time
,	and	the	result	shown	in	Figure	2.35	confirms	our	earlier	result:	if	$3088.70	were

deposited	into	the	account	today,	the	growth	due	to	interest	would	allow	us	to	withdraw
all	10	payments	of	$400.00	and	be	left	with	a	zero	balance	at	the	end.	In	other	words	a
sum	of	$3088.70	paid	today	would	exactly	generate	the	proposed	stream	of	future
payments	if	the	interest	rate	for	our	hypothetical	account	is	5%.



FIGURE	2.35	Excel	results	for	present	value	in	Example	2.27.

Oftentimes	future	payments	are	not	regular.	Our	next	section	shows	how	to	modify	our	work	in
this	section	to	handle	irregular	payments.

2.4.2	Present	Value	of	Irregular	Payments
In	many	situations	the	future	payments	we	expect	are	not	all	the	same	amount,	or	they	do	not
occur	at	regular	intervals.	Consider	the	following	example.



Example	2.28:

Consider	the	following	stream	of	guaranteed	future	payments:	$100	one	year	from	today,
$200	three	years	from	today,	and	$500	five	years	from	today.	Assuming	that	we	could	earn
an	interest	rate	of	3%	compounded	annually,	find	the	present	value	of	the	stream	of
payments.

We	first	approach	this	example	by	using	the	explicit	formula.	Note	that	we	cannot	use	the

formula	 	because	it	requires	that	the	same	payment	a	be
made	every	year.	Instead	we	find	the	present	value	of	each	payment	separately	using	the
formula	 .	Then	the	present	value	of	the	entire	stream	will	be	the	sum	of
the	individual	present	values.

Let	B1(0),	B2(0),	and	B3(0)	represent	the	present	values	of	the	first,	second,	and	third
payments,	respectively.	From	our	work	in	Example	2.25,	we	know	that	

,	 ,	and	 .	Adding
up	all	of	the	individual	present	values	gives	us	the	present	value	for	the	series	of
payments:	 .	Again	we	interpret	this	result	as
follows:	if	we	were	to	deposit	$711.42	into	an	account	earning	3%	today,	we	would	be
able	to	withdraw	each	payment	at	the	specified	time	and	end	up	with	a	zero	balance
immediately	following	the	last	withdrawal.

The	approach	we	took	in	the	previous	example	will	always	work.	The	problem	with	the
approach	is	that	it	is	very	slow	if	the	number	of	payments	is	large.	For	instances	where	we
have	a	lot	of	payments,	Excel	is	the	clear	choice.	To	demonstrate	how	to	use	Excel,	we	use	it
to	rework	Example	2.28.

Example	2.29:

Create	an	Excel	spreadsheet	for	finding	the	present	value	of	the	irregular	stream	of
payments	from	Example	2.28.

The	setup	of	this	spreadsheet	needs	to	be	different	than	the	one	used	previously	because
there	is	no	longer	a	single	payment	parameter,	a.	Instead	we	may	have	different	payment
amounts	at	different	times.	The	DDS	for	this	situation	is

Here	B(t)	represents	the	balance	in	our	hypothetical	account	and	r	is	the	assumed	interest
rate.	We	understand	a(t)	to	be	the	future	payment	amount	at	time	t	and	that	amount	can	be



zero	if	there	is	no	payment	scheduled	for	that	time.

To	use	Excel	to	model	this	situation,	we	need	to	build	in	the	flexibility	to	handle	a
payment	of	any	amount	at	any	time.	We	accomplish	this	by	adding	a	column	next	to	the
balance	column	where	the	user	can	manually	enter	any	future	payments	at	the	appropriate
time.	Then	in	our	formula	for	the	balance,	we	subtract	the	value	in	the	payment	column
rather	than	subtracting	the	single	parameter	value	from	before.	Figure	2.36	shows	the	new
setup	with	a	stand-in	value	of	$5000	for	the	present	value.

FIGURE	2.36	Excel	model	setup	for	present	value	of	irregular	payments.

We	also	give	the	formula	version	in	Figure	2.37.	Note	how	the	formula	in	column	B	refers
to	the	possible	payment	in	column	C.



FIGURE	2.37	Excel	model	for	present	value	of	irregular	payments	with	formulas
displayed.

The	final	step	is	for	us	to	input	the	correct	assumed	interest	rate	and	all	of	the	future
payments	at	the	appropriate	times	and	then	use	Goal	Seek	to	find	the	present	value	in	C4
that	gives	us	a	balance	of	zero	at	time	 .	The	results	of	our	Goal	Seek	are	shown	below
in	Figure	2.38.	Notice	that	the	present	value	of	$711.42	is	the	same	as	the	result	from
Example	2.28.

FIGURE	2.38	Excel	present	value	result	for	Example	2.29.



The	Excel	spreadsheet	model	we	created	in	Example	2.29	is	a	very	useful	one	as	we	will	see
in	the	next	sections.	We	begin	with	lotteries.

2.4.3	Lottery	Payouts
For	lotteries	with	large	jackpots,	the	winner	of	the	lottery	has	a	choice	to	make:	take	a	lump
sum	in	cash	today	or	take	30	guaranteed	annual	payments	over	the	next	29 years	starting	today
(called	the	annuity	option).	What	occasionally	surprises	winners	is	that	the	lump-sum	option	is
not	the	same	as	the	jackpot.	A	jackpot	of	$20	million,	for	example,	would	pay	a	lump	sum	of
about	$11	million	in	cash.	The	“jackpot”	actually	refers	to	the	face	value	sum	of	all	of	the
guaranteed	annual	payments.	The	big	question	for	lottery	winners	then	is,	which	is	better
financially—the	lump	sum	in	cash	today	or	the	promise	of	those	30	future	payments?	The
answer	to	this	question	is	complicated	by	issues	like	state	and	federal	income	taxes,	but	we
ignore	those	for	now	in	favor	of	focusing	on	the	present	value	of	each	option.

Example	2.30:

In	the	past,	lotteries	would	allow	the	winner	to	choose	between	the	lump	sum	and	30
equal	payments—the	first	payment	happens	today	and	the	rest	are	paid	annually	over	the
next	29 years.	A	2014	Powerball	lottery	jackpot	was	$50 million	with	a	lump-sum	cash
payout	option	of	$31.2 million.	We	assume	that	we	have	access	to	an	account	that	will
earn	the	equivalent	of	4.5%	interest	compounded	annually.	Which	is	better	from	a	present
value	point	of	view:	a	lump-sum	cash	payout	of	$31.2 million	or	the	30	annual	payments?

Note	that	since	the	30	annual	payments	are	all	equal,	we	could	work	this	problem	using
our	explicit	formula.	However	the	fact	that	the	first	payment	actually	occurs	today
introduces	a	slight	complication	that	we	will	not	have	to	worry	about	if	we	use	the	Excel
spreadsheet	from	Example	2.29.	(When	we	set	up	that	spreadsheet,	we	included	in	our
payment	column	the	possibility	of	a	payment	at	time	 .)

We	must	first	determine	the	annual	payment.	This	we	find	by	dividing	the	jackpot	by	the

number	of	payments:	 	for	all	 .

Next	we	enter	the	30	payments	of	$1,666,666.67	in	the	payment	column	of	our	spreadsheet
starting	at	time	 	and	continuing	through	time	 .	Our	spreadsheet	with	most	rows
hidden	should	appear	as	in	Figure	2.39	where	the	present	value	is	just	a	stand-in	value	for
now.



FIGURE	2.39	Excel	setup	for	present	value	of	lottery	annuity	option	in	Example	2.30.

By	using	Goal	Seek	to	find	the	present	value	that	gives	a	zero	balance	at	year	29,	we	find
that	the	present	value	of	the	annuity	option	is	$28,369,935.58,	considerably	less	than	the
stated	$50 million	value	of	the	jackpot.	We	also	note	that	compared	to	the	lump-sum
option,	the	annuity	option	is	not	as	attractive.

In	recent	years	lotteries	have	changed	the	way	they	handle	the	annuity	payout	option.	The
Powerball	lottery	and	others	have	claimed	that	over	the	years	winners	have	expressed	concern
that	due	to	increases	in	the	cost	of	living,	level	annual	payments	result	in	a	lower	standard	of
living	over	time.	As	a	result	lotteries	have	started	offering	an	increasing	annuity	where	the
future	annual	payments	increase	by	a	fixed	percentage	every	year.	Powerball	uses	an	increase
of	4%	every	year,	while	Mega	Millions	uses	an	increase	of	5%	every	year.	(So	if	the
Powerball	annuity	payout	started	with	a	$1,000,000	payment,	the	second	payment	would	be
$1,040,000.)	The	annual	payments	still	begin	with	the	first	payment	today	and	then	continue	for
the	next	29 years,	and	the	face	value	sum	of	the	annual	payments	must	still	equal	the	reported
jackpot.	In	the	exercises	the	reader	is	invited	to	analyze	the	new	system	using	present	value	and
to	perhaps	offer	a	different	explanation	for	the	change	to	increasing	annuities.

2.4.4	Section	Exercises

For	all	problems	assume	access	to	an	account	that	has	an	interest	rate	of	 	compounded



annually.

1.	 Find	the	present	value	for	a	future	payment	of	$5000.00	to	be	made	6 years	from	today.
Explain	what	this	present	value	represents	in	a	complete	sentence.

2.	 Find	the	present	value	of	a	series	of	future	payments	of	$400.00	to	be	made	each	year	for	4 
years	starting	1 year	from	today.

3.	 Suppose	you	need	$50,000	per	year	to	live	comfortably	in	retirement.	If	you	expect	your
retirement	to	last	for	30 years,	determine	the	nest	egg	you	will	need	on	the	day	you	retire.
Explain	what	your	result	means	in	the	context	of	the	problem.

4.	 Use	present	value	to	decide	which	is	the	better	option	for	you	if	you	are	to	be	the	recipient
of	a	stream	of	future	payments:

a.	 Option	A:	$500	every	year	for	5 years	starting	a	year	from	today

b.	 Option	B:	$1500	two	years	from	today	and	$1200	to	be	paid	6 years	from	today

Explain	your	answer!

5.	 Extension:	A	perpetuity	is	a	series	of	future	payments	that	continues	forever.	Use	the
concept	of	an	equilibrium	value	to	find	the	present	value	of	a	perpetuity	that	pays	$50,000
every	year	starting	1 year	from	today.

6.	 In	the	past,	lotteries	would	allow	the	winner	to	choose	between	the	lump	sum	and	30	equal
payments—the	first	payment	happens	today	and	the	rest	are	paid	annually	over	the	next	29 
years.	The	current	Powerball	lottery	jackpot	is	$40	million	with	a	lump-sum	cash	payout
option	of	$21.3	million.	Assume	that	you	have	an	account	that	will	earn	3.5%	interest
compounded	annually.

a.	 What	is	the	annual	payment	under	the	annuity	option?

b.	 With	a	lump-sum	cash	payout	of	$21.3	million,	which	option	is	better	from	a	present
value	point	of	view—the	lump	sum	or	the	annuity?

c.	 What	would	be	the	required	interest	rate	in	order	for	the	lump	sum	and	annuity	options
to	be	equivalent?

7.	 Extension:	In	recent	years	lotteries	have	changed	the	way	they	handle	the	annuity	payout
option.	Lotteries	now	use	increasing	annuities	where	the	annual	payment	increases	by	a
fixed	percentage	every	year.	Powerball	uses	an	increase	of	4%	every	year,	while	Mega
Millions	uses	an	increase	of	5%	every	year.	(So	if	the	Powerball	annuity	payout	started
with	a	$1,000,000	payment,	the	second	annual	payment	would	be	$1,040,000.)	The	annual
payments	still	begin	with	the	first	payment	today	and	then	continue	for	the	next	29 years.
The	sum	of	the	annual	payments	must	still	equal	the	jackpot.

a.	 Determine	the	annual	payouts	for	Powerball	if	the	sum	of	all	30	annual	payouts	must
equal	the	jackpot	of	$50	million.

b.	 Determine	the	present	value	of	the	annuity	option	for	Powerball.



c.	 Which	annuity	is	better	from	a	present	value	point	of	view:	level	payments	or
increasing	payments?	Note	that	the	answer	to	this	question	suggests	a	different	reason
for	why	lotteries	may	have	changed	their	payout	method.

8.	 Repeat	Exercises	a–c	for	the	Mega	Millions	game.

9.	 Given	equal	jackpots,	which	game	would	you	prefer	to	win	and	why—Powerball	or	Mega
Millions?

2.5	CAR	LEASES
There	are	two	main	ways	that	people	acquire	a	new	car—by	purchasing	the	car	or	by	leasing
the	car.	When	considering	a	new	car,	it	is	almost	always	advantageous	from	a	purely	financial
point	of	view	to	purchase	the	car	rather	than	lease.	For	used	cars,	though,	the	situation	can	be
different.

Drivers	who	do	not	expect	to	keep	a	vehicle	very	long	sometimes	opt	to	lease	the	vehicle
rather	than	purchase	it	outright.	This	means	that	the	customer	rents	the	vehicle	for	a	specified
period	of	time	(the	term)	for	a	certain	amount	of	money	per	month	(the	lease	payment).
Common	terms	for	new	car	leases	are	2–4 years.	At	the	end	of	the	lease	agreement,	the
customer	must	return	the	vehicle	to	the	dealer,	and	at	that	time	she	or	he	has	the	option	to
purchase	the	vehicle	outright	for	a	price	that	was	agreed	upon	at	the	signing	of	the	lease.	This
price	is	called	the	optional	lease-end	buyout.	The	following	are	some	of	the	pros	and	cons	of
leasing	that	a	prospective	lessee	should	consider.	Some	benefits	of	new	car	leases	are	as
follows:

By	always	leasing	the	customer	can	always	drive	a	new	car.	New	cars	come	with	all	of	the
latest	bells	and	whistles,	including	the	latest	safety	equipment,	and	they	are	generally	more
trouble-free	than	older	vehicles.

The	monthly	lease	payment	is	usually	lower	than	the	monthly	payment	required	to	purchase
the	same	car.	This	is	because	the	lessee	does	not	own	the	car	and	is	only	paying	for	the
depreciation	in	value	of	the	vehicle	over	the	life	of	the	lease.

New	leased	vehicles	are	usually	covered	under	the	manufacturer’s	full	factory	warranty	for
the	life	of	the	lease.	This	means	the	leaseholder	will	only	need	to	pay	for	routine
maintenance	such	as	oil	changes	over	the	term	of	the	lease.

Customers	who	lease	a	new	vehicle	rather	than	purchase	it	generally	pay	lower	sales	taxes.
This	is	because	they	are	only	taxed	on	the	value	of	the	vehicle’s	depreciation	over	the	term
of	the	lease.

There	are	downsides	to	leasing	too:

Over	the	long	term,	leasing	new	vehicles	is	very	expensive	because	the	leaseholder	is
always	paying	for	the	depreciation	at	the	beginning	of	a	car’s	life,	the	time	when
depreciation	is	greatest.



When	continually	leasing	the	monthly	payments	never	stop.	With	purchasing	a	car,	the
payments	may	be	higher	than	an	equivalent	lease,	but	they	only	last	for	the	term	of	the	loan,
and	then	the	car	is	owned	outright.

Car	leases	limit	how	much	the	holder	can	drive	the	car.	This	mileage	limit	is	specified	in
the	lease	contract	and	typically	will	allow	the	leaseholder	to	drive	12,000–15,000	miles
per	year.	Any	mileage	on	the	car	above	that	limit	will	incur	a	fee	when	the	car	is	turned	in
to	the	dealer,	typically	18¢–25¢	per	mile	over	the	limit.

Leases	also	specify	that	the	car	must	be	returned	with	only	“normal	wear	and	tear”	on	it.
Any	damage	to	the	vehicle	in	excess	of	normal	wear	and	tear	is	the	responsibility	of	the
leaseholder	to	fix	or	pay	for.

Unless	the	lessee	has	taken	out	gap	insurance,	they	are	exposed	to	some	risk,	especially	at
the	beginning	of	the	lease.	If	a	leased	car	is	stolen	or	totaled,	the	insurance	on	the	vehicle
will	pay	replacement	value	to	the	dealer.	Since	new	cars	depreciate	so	quickly,	the
replacement	value	can	be	less	than	the	amount	the	leaseholder	still	owes.	The	result	is	that
the	lessee	can	owe	money	for	a	car	they	no	longer	have.	Gap	insurance	provides	coverage
for	the	difference	between	what	is	owed	on	the	car	and	what	the	car	is	worth,	and	it	is
sometimes	included	in	the	lease	as	part	of	the	monthly	payment.

Some	leases,	particularly	those	that	tout	low	monthly	payments,	require	a	large	down
payment	at	signing.	Making	a	large	down	payment	on	a	lease	may	be	difficult	for	some
customers	to	accomplish,	and	if	the	vehicle	is	stolen	or	totaled,	the	lessee	will	not	recoup
any	of	that	money.

In	the	remainder	of	this	section,	we	discuss	a	third	alternative	for	obtaining	a	vehicle,	one	that
until	relatively	recently	was	unknown	to	most	people	and	difficult	to	arrange.

2.5.1	Lease	Takeovers
An	alternative	to	purchasing	or	leasing	is	the	lease	takeover.	In	a	lease	takeover	situation,	the
lease	seller	is	someone	who	has	leased	a	vehicle	they	no	longer	want—they	may	want	a	new
vehicle	or	they	may	no	longer	be	able	to	afford	the	current	lease	payments.	However,	it	can	be
extremely	expensive	or	impossible	to	just	cancel	a	lease	contract.	This	is	where	a	lease
takeover	makes	sense.	A	lease	buyer	is	an	individual	who	is	willing	to	take	over	the	lease,	that
is,	assume	use	of	the	vehicle	and	the	responsibility	for	making	the	lease	payments	until	the	end
of	the	lease.	This	can	be	a	great	deal	for	both	parties.	The	seller	gets	rid	of	a	vehicle	they	no
longer	want	or	can	afford,	and	the	buyer	can	get	a	fairly	new	vehicle	on	a	short-term	lease	at	a
good	price.	Frequently	the	car	is	still	under	factory	warranty,	the	buyer	gets	to	try	the	vehicle
for	an	extended	time	(i.e.,	the	remainder	of	the	lease),	and	at	the	end	of	the	lease,	the	buyer	can
simply	return	the	car	to	the	dealer	if	he	or	she	does	not	want	to	purchase	it	for	the	lease-end
buyout.	Furthermore,	the	lease	seller	is	sometimes	motivated	enough	to	offer	a	cash	incentive
to	the	buyer,	which	further	lowers	the	cost	to	the	buyer.	One	caveat	is	that	the	finance	company
for	the	original	lease	may	charge	a	fee	for	the	transfer	of	the	lease,	so	this	should	be
considered	when	evaluating	a	lease	takeover.



Though	it	is	perhaps	not	obvious	that	present	value	can	help	us	decide	when	a	lease	takeover	is
a	good	deal,	we	show	how	to	use	present	value	to	our	advantage	in	this	situation.	By	the	end	of
this	section,	the	reader	will	be	able	to	use	Excel	and	present	value	to	evaluate	potential	lease
takeovers.

The	website	www.swapalease.com	is	a	site	that	helps	people	transfer	car	leases	(Swap-a-
Lease,	2015).	If	someone	wants	to	get	out	of	a	lease,	she	or	he	can	post	the	terms	of	the	lease
on	the	website	in	the	hopes	of	transferring	it	to	someone	who	wants	it.	That	way	the	lease
owner	does	not	have	to	pay	any	penalties	for	breaking	the	lease,	and	the	person	who	assumes
the	lease	may	end	up	with	a	better	deal	than	he	or	she	could	get	on	a	new	car.

Car	leasing	is	generally	not	a	good	move	financially,	but	taking	over	someone	else’s	lease	can
be.	One	reason	is	that	the	lease	owner	has	already	made	any	required	down	payment.	Another
is	that	the	lease	owner	may	have	used	far	fewer	miles	than	the	lease	allowed.	This	can	mean
that	the	value	of	the	car	at	the	end	of	the	lease	will	be	higher	than	predicted	because	the	owner
of	the	lease	is	paying	for	more	wear	on	the	vehicle	than	is	actually	present.	Finally,	a	lease
takeover	will	be	even	more	attractive	if	the	lease	owner	offers	a	cash	incentive.

Remember	that	taking	over	a	lease	commits	the	buyer	to	making	the	remaining	future	lease
payments	and	gives	the	buyer	an	option	to	purchase	the	car	at	the	end	of	the	lease.	By
comparing	the	present	value	of	all	remaining	payments	and	the	buyout	to	the	current	value	of
the	car,	we	can	spot	lease	takeovers	that	are	particularly	good	deals.

Example	2.31

We	first	find	a	lease	we	are	interested	in	taking	over	by	searching	Swapalease.com	for
whatever	kind	of	vehicle	we	want.	We	can	also	specify	particular	states	to	minimize	the
cost	of	travel	to	get	the	car.	A	very	popular	car	for	leases	is	the	BMW	3	Series.	After	a
quick	search	we	select	a	gray	2-door	328i	that	has	6 months	remaining	on	the	lease.	The
car	currently	has	18,200	miles	on	it,	and	we	can	drive	up	to	1,967	miles	each	month
without	an	overmileage	penalty.	The	monthly	payment	is	$585.20,	the	optional	lease
buyout	is	$29,277.00,	and	the	seller	is	not	offering	a	cash	incentive.	Is	this	a	good	lease	to
take	over	from	a	financial	point	of	view?

The	first	step	is	to	calculate	the	present	value	of	the	lease	takeover	assuming	that	we	will
purchase	the	car	at	the	end.	In	other	words,	how	much	cash	would	we	have	to	deposit	into
an	account	today	in	order	to	cover	all	of	the	payments	and	the	cash	buyout	at	the	end?	We
already	have	the	spreadsheet	that	will	do	the	necessary	calculations	for	us.	However,	one
modification	we	will	have	to	make	is	that	since	the	lease	payments	are	monthly,	we	have
to	change	our	time	units	to	months	and	use	monthly	compounding	for	our	account.	We
assume	a	rate	of	3%	for	this	example;	since	our	payments	are	monthly,	the	rate	we	use	in

our	calculations	will	be	 .	The	formula	version	of	the	modified	spreadsheet	is
shown	in	Figure	2.40.

http://www.swapalease.com
http://Swapalease.com


FIGURE	2.40	Excel	model	for	present	value	of	irregular	payments	with	monthly
compounding.

Next	we	enter	all	of	the	remaining	monthly	payments	as	well	as	the	buyout,	which	we
consider	to	be	the	final	payment.	We	then	use	Goal	Seek	to	find	the	present	value	that
gives	us	a	zero	balance	on	the	month	of	the	optional	buyout.	The	results	of	a	successful
Goal	Seek	are	shown	in	Figure	2.41.

FIGURE	2.41	Excel	result	for	present	value	of	the	lease	takeover	in	Example	2.31.

We	see	from	Figure	2.41	that	the	present	value	of	the	lease	takeover	is	$32,331.04.
However,	knowing	the	present	value	of	the	lease	does	not	tell	us	whether	or	not	the
takeover	is	a	good	deal.	To	decide	that	we	must	determine	what	it	would	cost	to	purchase
this	car	today,	say,	from	a	dealer.	If	the	present	value	of	the	takeover	is	equal	to	or
perhaps	lower	than	the	cost	of	buying	the	car	outright	today,	then	the	takeover	is	a	good
deal.



We	can	get	a	pretty	good	estimate	of	the	current	value	of	the	vehicle	by	using	one	of	many
sites	on	the	web	for	valuing	used	cars.	We	need	to	be	careful	to	include	as	much
information	as	we	can	from	the	lease	posting	to	make	sure	we	get	an	accurate	estimate.
Using	the	used	car	appraiser	through	Edmunds.com,	we	select	the	year,	make,	model,
mileage,	options,	and	condition	listed	on	the	Swap-a-Lease	ad.	(Note	that	we	are
assuming	the	ad	is	truthful.)	Our	results	from	Edmunds.com	are	shown	in	Figure	2.42.

FIGURE	2.42	Edmunds.com	used	car	evaluation	for	Example	2.31.
Source:	Edmunds.com	(2015).	Reproduced	with	permission	of	Edmunds.com.

According	to	Edmunds.com	if	we	were	to	try	to	buy	this	exact	car	from	a	private	party
right	now,	we	would	expect	to	pay	around	$28,628.00;	from	a	dealer	the	car	would	cost
$31,140.00	cash	today.	Comparing	these	figures	to	the	lease	takeover	present	value	of

http://Edmunds.com
http://Edmunds.com
http://Edmunds.com
http://Edmunds.com
http://Edmunds.com
http://Edmunds.com


$32,331.04,	the	takeover	appears	to	not	be	a	particularly	good	deal.	Keep	in	mind,	though,
that	if	we	did	take	over	the	lease	and	then	decided	we	did	not	want	to	keep	the	car,	we
would	just	turn	it	in	to	the	dealer	in	8 months	and	walk	away.	That	flexibility	is	worth
something	to	the	buyer.

2.5.2	Section	Exercises

1.	 Choose	a	vehicle’s	make	and	model,	and	use	www.swapalease.com	to	find	a	lease
takeover	for	that	vehicle.	Note	that	you	should	refine	the	search	to	only	include	takeovers
that	include	the	cost	of	the	optional	lease	buyout.

a.	 Find	the	present	value	of	the	lease	takeover	by	finding	the	present	value	of	all	future
payments	including	the	optional	lease	buyout.	You	will	need	to	supply	your	own
assumed	interest	rate	and	note	how	you	determined	it.

b.	 Use	a	website	such	as	www.edmunds.com	or	www.kbb.com	to	determine	the	amount
you	would	have	to	pay	for	the	same	car	today	if	you	were	to	buy	it	outright.	Be	sure	to
include	all	options	when	determining	the	car’s	value.

c.	 Explain	in	a	complete	sentence	or	two	whether	the	lease	takeover	is	a	good	deal.

2.	 Find	a	lease	takeover	for	which	the	present	value	of	the	takeover	is	lower	than	the	cash
price	of	purchasing	the	car	today.

http://www.swapalease.com
http://www.edmunds.com
http://www.kbb.com


3
COMBAT	MODELS
Up	until	now	our	study	of	discrete	dynamical	system	models	has	concentrated	on	single-
compartment	models.	These	are	models	for	which	we	have	only	one	quantity	of	interest	such
as	a	population	or	a	loan	balance.	In	this	chapter	we	extend	our	consideration	to	two-
compartment	models	where	we	have	two	interacting	populations,	this	time	in	the	context	of
combat	between	two	opposing	sides.

Throughout	this	chapter,	when	we	speak	of	a	victory	for	one	side	over	another,	we	mean	that
one	side	will	be	completely	out	of	action	while	the	other	will	have	forces	remaining.	By	out	of
action	we	do	not	necessarily	mean	troops	killed	or,	in	the	case	of	a	naval	battle,	ships	sunk.
Instead	we	mean	that	the	force	has	been	rendered	helpless	so	that	it	can	no	longer	inflict
damage	on	the	other	side.	Our	notion	of	victory	is	a	simplistic	one.	In	particular	we	do	not
account	for	the	possibility	of	retreat,	surrender,	or	the	fact	that	an	operational	goal	such	as
“delaying	the	enemy”	can	be	achieved	by	the	“losing”	side.	We	also	do	not	distinguish	cases	of
Pyrrhic	victory	where	the	cost	of	battle	is	so	great	that	the	winning	side	for	all	practical
purposes	has	also	really	lost.

Our	models	progress	in	complexity	and	in	currency	as	we	move	through	the	chapter.	We	start
with	Lanchester’s	groundbreaking	model	from	1916,	move	to	the	1953	work	of	Engel,	consider
the	1995	work	of	Hughes,	and	finally	examine	the	2013	work	of	Armstrong.

3.1	LANCHESTER	COMBAT	MODEL
One	of	the	first	mathematical	models	for	analyzing	combat	was	proposed	by	F.	W.	Lanchester
in	1916	in	his	book	Aircraft	in	Warfare:	The	Dawn	of	the	Fourth	Arm	(Engel,	1954).	Forty
years	later	Lanchester’s	work	was	included	in	the	four-volume	collection	The	World	of
Mathematics	(Lanchester,	1956).	His	model	has	continued	to	inspire	much	discussion	and
many	different	modifications.	As	a	testament	to	Lanchester’s	influence,	Lucas	and	Turkes	write
that	the	Lanchester	model	is	“The	most	common	tool	for	modeling	aggregate	attrition	(Lucas	&
Turkes,	2004).”	The	two-volume	work	Lanchester	Models	of	Warfare	by	James	G.	Taylor
presents	a	comprehensive	mathematical	analysis	of	Lanchester’s	model	and	its	variations
(Taylor,	1983).

The	great	strength	of	the	Lanchester	combat	model	and	what	makes	it	so	compelling	is	its
simplicity.	The	assumptions	inherent	in	the	model,	though	too	severe	to	be	expected	to	be
satisfied	in	a	real	battle,	nevertheless	give	rise	to	important	conclusions	regarding	tactics	and
strategy.	As	Niall	MacKay	notes,	“Those	who	teach	military	tactics,	however,	still	value
Lanchester’s	model	and	its	generalizations,	because,	above	all,	they	provoke	careful	thought
about	the	consequences	of	the	conditions	of	engagement	(MacKay,	2005).”	And	as	Taylor
states,	“Lanchester-type	models	are	an	ideal	vehicle	for	studying	combat	dynamics	because	of



the	relative	ease	of	extracting	information	from	them	and	the	fact	that	usually	no	other	type	of
model	is	better	justified	(Taylor,	1983).”

In	this	section	we	present	a	discrete	version	of	Lanchester’s	model	and	see	what	information
we	can	extract	from	it.

We	begin	with	two	adversaries,	Blue	and	Red,	and	we	represent	the	numbers	of	Blue	and	Red
units	remaining	in	the	battle	at	time	t	as	B(t)	and	R(t),	respectively.	The	meaning	of	“units”	will
change	with	the	context	of	the	battle:	units	could	be	ships,	tanks,	soldiers,	etc.	The	basic
assumption	of	the	Lanchester	model	is	that	a	side	incurs	losses	at	a	rate	that	is	proportional	to
the	size	of	the	enemy’s	force:	the	larger	the	Red	force,	the	more	damage	it	will	do	to	the	Blue
force	and	vice	versa.	We	also	assume	uniformity	of	units,	that	is,	that	all	units	for	each	side	are
equally	capable.

In	order	to	complete	the	model,	we	introduce	a	parameter	for	fighting	effectiveness,	which
we	define	to	be	the	average	number	of	enemy	units	put	out	of	action	by	a	single	opposing	unit
during	each	time	step.	We	can	think	of	fighting	effectiveness	as	a	kind	of	overall	measure	that	is
affected	by	things	such	as	quality	of	training,	weapons	technology,	and	experience	with	the
terrain.	If	we	let	b	represent	the	fighting	effectiveness	of	a	Blue	unit	and	r	the	fighting
effectiveness	of	a	Red	unit,	then	we	can	represent	our	combat	model	with	the	flow	diagram	in
Figure	3.1.	Note	that	we	have	two	quantities	of	interest,	Blue	and	Red	forces	remaining,	so	we
have	two	ovals,	or	compartments,	in	our	diagram.

FIGURE	3.1	Flow	diagram	for	Lanchester	model.



Each	time	step	results	in	a	decrease	to	both	forces	proportional	to	the	size	of	the	enemy.	The
resulting	DDS	is

This	is	a	very	different	kind	of	model	than	the	ones	we	have	seen	to	this	point.	Not	only	do	we
have	two	dependent	variables	to	track,	but	the	variables	depend	on	each	other.	We	illustrate
how	the	model	works	in	our	next	example.

Example	3.1:

Suppose	Blue	begins	the	battle	with	50	units,	so	 ,	and	Red	begins	the	battle	with
100	units,	so	 .	Each	Blue	unit	has	a	fighting	effectiveness	of	 ,	which
means	that	each	Blue	unit	will	inflict	0.10	casualties	(units	put	out	of	action)	on	the	Red
side	per	time	step.	Each	Red	unit	has	a	fighting	effectiveness	of	 ,	which	means	that
each	Red	unit	will	inflict	0.20	casualties	on	the	Blue	side	per	time	step.	After	one	time
step,	how	many	units	of	each	side	remain?

We	employ	the	DDS	to	find	both	B(1)	and	R(1).	For	Blue	we	have

For	Red	we	have

We	see	that	after	one	time	step,	the	Blue	side	has	incurred	much	heavier	casualties	than
Red.	This	should	agree	with	our	intuition:	Red	forces	outnumbered	Blue	by	2-to-1	at	the
outset	and	the	Red	troops	were	twice	as	effective.

Projecting	the	battle	further	into	the	future	quickly	becomes	tedious	by	hand,	so	we	enlist	the
aid	of	Excel.	Fortunately,	implementing	such	a	model	in	Excel	is	no	more	difficult	than	before:
we	just	need	a	column	for	each	variable.	Figure	3.2	shows	the	Excel	model	setup.	In	Figure	3.3
we	show	the	Lanchester	Excel	model	with	formulas	displayed.



FIGURE	3.2	Lanchester	Excel	model	setup.



FIGURE	3.3	Lanchester	Excel	model	with	formulas	displayed.

Next	we	use	our	Excel	model	to	project	the	battle	from	Example	3.1	further	into	the	future.

Example	3.2:

Use	Excel	to	continue	the	battle	from	Example	3.1	to	its	conclusion.	How	many	remaining
units	are	there	for	the	victor?

In	Excel	we	drag	the	model	equations	down	until	one	side	is	completely	eliminated.	In
this	case	we	see	that	it	takes	three	time	steps	for	the	Red	side	to	completely	put	Blue	out
of	action,	and	at	the	end	of	the	battle,	Red	will	be	left	with	90.9	units.	The	results	are
shown	in	Figure	3.4.



FIGURE	3.4	Lanchester	Excel	results	for	Example	3.2.

In	some	contexts	we	may	wish	to	simply	round	to	the	nearest	whole	unit,	while	for	others
(tanks,	ships,	etc.),	it	makes	sense	to	view	decimals	as	partial	damage.

Example	3.2	brings	up	an	issue	in	the	Lanchester	model	that	we	resolve	with	Excel.	Namely,	if
we	drag	the	model	down	far	enough,	in	most	cases	we	will	end	up	with	negative	force	levels
for	one	side.	Not	only	does	this	not	make	physical	sense,	but	it	also	has	the	effect	of	serving	to
increase	the	force	level	of	the	enemy,	which	also	does	not	make	physical	sense.	What	we	need
is	a	way	to	“turn	off”	the	model	once	a	force	level	reaches	zero,	and	we	accomplish	this	in
Excel	with	the	“IF”	statement.



E.11	IF	Statements
In	this	Excel	section	we	introduce	a	very	useful	command	in	Excel:	the	IF	statement.

The	IF	function	in	Excel	is	a	way	for	the	user	to	tell	Excel	to	do	one	of	two	things	based
on	some	condition	set	by	the	user.	The	basic	structure	of	the	command	is	“IF(condition	X
holds,	do	this,	otherwise	do	that).”	The	next	example	illustrates	how	the	IF	command
works.

Example	3.3:

Recall	that	the	absolute	value	function	is	always	nonnegative:	the	absolute	value	of	4	is	
,	but	the	absolute	value	of	−2	is	 .	Set	up	an	“IF”	statement	in	Excel	that	will

take	a	number	stored	in	column	A	starting	in	cell	A3	and	calculate	its	absolute	value	in
column	B	starting	in	cell	B3.

The	basic	structure	of	the	“IF”	statement	located	in	cell	B3	should	be	“IF(cell	A3
contains	a	negative	number,	report	the	negative	of	the	number,	otherwise	just	report
the	number).”	Using	correct	syntax	we	would	enter	“=IF(A3<0,	-A3,A3)”	into	cell
B3.	Once	the	formula	is	entered	into	cell	B3,	we	drag	it	down	as	usual.	Figure	3.5
shows	the	formula	setup,	and	Figure	3.6	shows	the	results.



FIGURE	3.5	Excel	IF	statement	setup	for	Example	3.3.



FIGURE	3.6	Excel	IF	statement	results	for	Example	3.3.

Notice	that	all	values	in	column	B	are	nonnegative	as	required.	As	a	final	note	we
point	out	that	Excel	has	a	built-in	absolute	value	function;	“=ABS(X)”	will	return	the
absolute	value	of	the	number	X.

In	our	combat	models	we	want	to	ensure	that	we	do	not	allow	negative	values	for
force	levels.	Thus	in	this	context	the	“IF”	command	structure	should	be	“IF(a	force
level	would	be	negative,	report	‘0’	for	the	force	level	instead,	otherwise	give	the
force	level	as	usual).”	Since	we	never	know	when	a	force	level	may	turn	negative,
we	must	include	this	“IF”	statement	as	part	of	our	original	Excel	formulas.	Thus



instead	of	entering	a	formula	such	as	“=B8-$C$5*B8”	that	could	be	negative,	we
enter	a	formula	such	as	“=IF(B8-$C$5*B8<0,0,B8-$C$5*B8)”	that	will	return	a
value	of	0	if	the	force	level	is	negative.	We	then	copy	the	formula	down	as	usual.
Figure	3.7	shows	the	new	formula	version	of	our	Lanchester	model.

FIGURE	3.7	Modified	Lanchester	Excel	model	with	formulas	displayed.

Next	we	show	the	new	resulting	output	in	Figure	3.8	using	the	parameters	from
Example	3.2.



FIGURE	3.8	Modified	Lanchester	Excel	model	showing	nonnegative	output.

Note	the	difference:	once	the	Blue	force	level	would	otherwise	become	negative,	the
model	keeps	the	level	fixed	at	0.

3.1.1	The	Fractional	Exchange	Ratio	and	Fighting	Strength
With	the	basic	Lanchester	combat	model,	it	is	possible	to	determine	how	the	battle	will	end
from	the	very	first	time	step.	In	fact,	as	we	will	see,	it	is	possible	to	determine	the	victor
before	the	fighting	even	starts.	The	reason	is	that	as	soon	as	one	side	has	an	advantage	over	the
other,	that	advantage	grows	until	the	weaker	side	is	defeated.

The	key	to	determining	which	side	has	an	initial	advantage	is	the	fractional	exchange	ratio



(FER),	a	ratio	that	compares	the	relative	losses	of	the	two	sides.	If	we	let	ΔB	represent	the
change	in	Blue	forces	and	ΔR	the	change	in	Red	forces,	then	the	relative	losses	(or
proportional	change)	for	the	Blue	side	will	be	 	and	the	relative	losses	(or	proportional
change)	for	the	Red	side	will	be	 .	Then	we	define	the	FER	to	be	the	ratio	of	relative	losses
for	Blue	to	relative	losses	for	Red:

We	examine	the	FER	with	a	computational	example.

Example	3.4:

Suppose	that	initially	there	are	100	Blue	units	and	200	Red	units	and	that	after	one	time
step,	Blue	loses	20	units	and	Red	loses	80	units.	Calculate	and	interpret	the	FER.

We	note	that	Blue	has	lost	 ,	or	20%	of	its	units,	while	Red	has	lost	
,	or	40%	of	its	units.	The	FER	is	the	relative	change	in	Blue	divided	by

the	relative	change	in	Red,	so	 .	Because	the	FER	is	less	than	one,	we
see	that	Blue	is	losing	relatively	fewer	units	than	Red.	This	tells	us	that	Blue	is	“winning”
despite	having	many	fewer	units	than	Red.

As	we	will	see,	the	initial	advantage	for	Blue	indicated	by	the	FER	being	less	than	one	will
only	increase	as	the	battle	goes	on,	resulting	in	an	eventual	victory	for	Blue.	If	the	original	FER
had	been	greater	than	one,	that	would	have	indicated	that	Blue	was	losing	relatively	more	units
than	Red	and	hence	would	point	to	a	Red	victory.	The	case	where	the	FER	equals	one	means
that	both	sides	are	sustaining	equal	relative	losses,	and	in	such	a	case	the	battle	will	result	in
mutual	destruction.

According	to	our	DDS,	during	the	first	round	of	fighting,	Blue	loses	rR(0)	units	so	that	the

initial	relative	loss	for	Blue	is	given	by	 .	Similarly,	the	initial	relative	loss	for	Red

is	given	by	 .	Thus	the	FER	is	the	ratio	of	these	two	quantities:

Simplifying	slightly	we	can	also	write



so	that	our	final	expression	for	FER	is	given	by

The	next	theorem	tells	us	that	with	the	FER	calculated	as	in	the	last	equation,	we	can	determine
the	eventual	victor	based	purely	on	the	FER.

Theorem	3.1

With	the	FER	defined	as	previously,	we	have	the	following	three	cases:

1.	 If	 ,	then	Blue	will	win.

2.	 If	 ,	then	Red	will	win.

3.	 If	 ,	then	both	sides	will	be	put	out	of	action.

We	refer	the	reader	to	Appendix	B	for	a	justification	of	this	result.

Because	 ,	we	can	restate	Theorem	3.1	slightly	to	see	a	very	useful	way	of
predicting	the	course	of	a	battle.	With	the	FER	defined	as	previously,	we	have	the
following:

1.	 If	 ,	then	Blue	will	win.

2.	 If	 ,	then	Red	will	win.

3.	 If	 ,	then	both	sides	will	be	put	out	of	action.

The	quantities	rR(0)2	and	bB(0)2	provide	an	overall	measure	of	the	strength	of	a	force	that
takes	into	account	both	the	fighting	effectiveness	and	the	number	of	units.	These	are	known
as	the	fighting	strengths	of	Red	and	Blue,	respectively,	and	our	previous	work	indicates
that	fighting	strength	is	the	key	determinant	of	which	side	will	prevail	in	a	battle:
whichever	side	has	the	greater	initial	fighting	strength	will	win.	We	refer	to	the	situation
in	Case	3	where	both	sides	have	equal	fighting	strengths	as	parity,	and	in	the	case	of
parity,	we	get	mutual	destruction.

Next	we	provide	a	quick	computational	example.

Example	3.5:

Suppose	that	initially	there	are	100	Red	forces	with	fighting	effectiveness	 	and	50
Blue	forces	with	fighting	effectiveness	 .	Use	fighting	strength	to	determine	who
will	win	the	battle.



Note	that	this	is	not	an	example	where	we	can	rely	on	intuition.	Red	has	twice	as	many
forces	as	Blue,	but	Blue’s	forces	are	three	times	as	effective	as	Red’s.	It	is	not	clear
which	of	these	two	advantages	will	win	the	day.	To	settle	it	we	calculate	the	fighting
strengths	of	both	sides.	The	fighting	strength	for	Red	is	given	by	

.	The	fighting	strength	for	Blue	is	given	by	
.	Since	the	fighting	strength	for	Red	is	larger	than	the	fighting

strength	for	Blue,	Red	will	win	the	battle.	We	confirm	this	prediction	with	the	Excel
output	given	in	Figure	3.9.



FIGURE	3.9	Excel	confirmation	of	Example	3.5	results.

The	previous	example	raises	an	important	question:	what	is	the	relative	benefit	of	increasing



the	effectiveness	of	forces	versus	increasing	their	numbers?	We	examine	this	question	in	the
following	examples.

Example	3.6:

Project	the	course	of	a	battle	between	two	equal	forces	that	are	equally	effective.	In
particular	assume	that	 	and	 .

In	terms	of	fighting	strengths,	note	that	we	have	parity	between	the	two	forces—each	has	a
fighting	strength	equal	to	 .	If	we	enter	these	values	into	our	Excel
spreadsheet	model,	we	get	the	output	shown	in	Figure	3.10.



FIGURE	3.10	The	Lanchester	Excel	model	confirms	mutual	destruction	for	forces	at
parity.

We	have	hidden	most	of	the	rows,	but	the	output	confirms	the	mutual	destruction	for	both
forces	that	we	expect	from	parity.

In	our	next	example	we	examine	the	effect	of	increasing	the	number	of	forces	for	one	side.



Example	3.7:

Project	the	course	of	a	battle	where	forces	are	equally	effective	but	one	side	has	twice	the
number	of	forces.	Specifically	we	use	the	parameters	from	Example	3.6	except	now	we
double	the	initial	number	of	units	for	Red	to	 .

Of	course	we	expect	Red	to	win	now,	and	our	Excel	output	in	Figure	3.11	bears	this	out.
In	fact	Red	will	defeat	Blue	in	only	three	time	steps	and	will	have	163.2 units	remaining.

FIGURE	3.11	Excel	confirmation	of	Red	victory	from	Example	3.7.

Suppose	now	that	Blue	starts	a	new	training	program	to	increase	the	fighting	effectiveness	of
its	units.



Example	3.8:

How	much	would	the	effectiveness	for	Blue	have	to	improve	in	order	for	Blue	to	offset
Red’s	numbers	advantage	from	the	previous	example?

Using	Excel	for	this	question	is	a	matter	of	experimenting	with	different	values	for	b	until
Blue	achieves	parity	with	Red.	Any	improvement	beyond	that	point	will	tip	the	battle	in
favor	of	Blue.	As	the	output	in	Figure	3.12	verifies,	the	value	we	seek	is	 .

FIGURE	3.12	Result	of	determining	Blue’s	required	fighting	effectiveness	to	achieve
parity	with	Red	in	Example	3.8.

We	can	also	approach	this	example	using	fighting	strengths.	The	fighting	strength	for	the
Red	side	is	 .	To	achieve	parity,	the	Blue	side	must	increase	its



fighting	effectiveness	so	that	 .	Thus	we	must	have	
	or	 .

One	way	to	express	the	result	in	the	previous	example	is	that	when	facing	a	force	that	is	twice
as	large,	the	fighting	effectiveness	for	the	smaller	force	must	be	four	times	as	large	as	that	of
the	larger	force	in	order	to	offset	the	larger	force’s	numbers	advantage.	A	similar	calculation
shows	that	if	Red	has	a	force	three	times	as	large	as	Blue,	Blue’s	fighting	effectiveness	must	be
nine	times	larger	than	Red’s	to	offset	Red’s	numbers	advantage.	To	turn	this	into	a	general
observation,	we	consider	the	formula	for	fighting	strength.

Example	3.9:

Suppose	Red	has	x	times	as	many	forces	as	Blue.	Show	that	Blue’s	forces	must	be	x2
times	as	effective	as	Red’s	in	order	for	Blue	to	achieve	parity	with	Red.

Parity	means	that	both	sides	have	equal	fighting	strengths;	thus	we	need	to	find	b	such	that	
.	Since	we	assume	that	Red	has	x	times	the	number	of	units	as	Blue,	we

have	 	and	the	previous	equality	becomes

Dividing	through	by	B(0)2	gives	the	result	that	 .	The	presence	of	the	squared	terms
in	the	formula	for	parity	implies	that	Blue	must	be	x2	times	as	effective	as	Red	to	offset
Red	having	x	times	the	number	of	forces	as	Blue.

In	the	next	section	we	present	a	historically	important	result	that	also	implies	Theorem	3.1.

3.1.2	Lanchester’s	Square	Law
Our	next	result	is	the	discrete-time	version	of	Lanchester’s	celebrated	square	law,	a	discussion
of	which	may	be	found	in	(MacKay,	2005).	This	result	allows	us	to	make	good	approximations
to	how	many	forces	the	winning	side	will	have	after	the	battle.



Theorem	3.2

Lanchester’s	Square	Law:	For	the	basic	Lanchester	combat	model,	the	following
identity	holds	for	all	times	t:

See	Appendix	B	for	a	justification	of	this	result.

Because	r	and	b	are	typically	small,	we	have	 	as	long	as	the	value	for	t	is	not
too	large.	Thus	 .	This	last	approximation	is	very	useful
for	estimating	how	much	of	the	winning	force	will	remain	after	a	battle	is	over.	We
illustrate	how	to	use	Lanchester’s	square	law	in	the	following	example.

Example	3.10:

Suppose	that	100	Blue	units	engage	70	Red	units	where	the	Red	units	are	more	effective
fighters	with	 	and	 .	Use	fighting	strength	to	predict	the	winner,	and	use
Lanchester’s	square	law	to	estimate	the	number	of	units	remaining	for	the	winner.

Note	that	the	fighting	strengths	are	 	for	Blue	and	
	for	Red.	Because	Blue’s	fighting	strength	is	greater	than	Red’s,

Blue	will	win	the	battle.	With	Lanchester’s	square	law,	now	we	can	say	more.	At	the	end
of	the	battle,	the	number	of	Red	units	will	be	0,	so	we	will	have

Not	only	do	we	know	that	Blue	will	win,	but	we	now	know	that	Blue	will	have	about
34.35	of	its	original	100	units	remaining.	We	compare	this	prediction	with	the	Excel
output	for	the	situation	given	in	Figure	3.13.



FIGURE	3.13	Excel	output	for	comparison	with	Lanchester’s	square	law	prediction	from
Example	3.10.

Note	that	the	Excel	model	verifies	that	Blue	is	in	fact	the	winner	and	that	Blue	will	have
32.4	units	remaining	at	the	end	of	the	battle,	which	is	pretty	close	to	our	estimate	of	34.35.

In	the	next	section	we	apply	Lanchester’s	model	and	square	law	to	a	historically	significant
naval	battle:	the	Battle	of	Trafalgar.

3.1.3	Strategic	Implications	and	the	Battle	of	Trafalgar
We	illustrate	the	power	of	the	conclusions	one	can	draw	from	Lanchester’s	model	with	a
famous	naval	battle	from	1805.	For	a	discussion	of	this	battle	using	Lanchester’s	original



differential	equations	model,	see	A	First	Course	in	Mathematical	Modeling	by	Giordano,
Fox,	Horton,	and	Weir	(Giordano,	Fox,	Horton,	&	Weir,	2008).
The	Battle	of	Trafalgar	in	1805	was	a	battle	between	a	British	Royal	Navy	force	of	27	ships
led	by	Admiral	Nelson	and	a	combined	French	and	Spanish	naval	force	of	33	ships	led	by
French	Admiral	Pierre-Charles	Villeneuve.	It	is	famous	in	part	because	of	the	unorthodox
strategy	that	Admiral	Nelson	successfully	employed	in	securing	a	very	decisive	victory	for	the
British.	As	we	will	see,	Nelson’s	strategy	provides	an	excellent	example	of	the	consequences
of	Lanchester’s	square	law.

The	prevalent	naval	combat	practice	at	the	time	was	for	both	forces	to	form	parallel	lines	of
fighting	ships	during	the	engagement.	Nelson	knew	that	despite	the	British	ship-to-ship
advantage	in	fighting	efficiency,	his	force	would	not	be	able	to	overcome	the	numbers
advantage	of	the	French–Spanish	force	through	fighting	effectiveness	alone.	If	he	engaged	the
enemy	in	a	traditional,	full	force	battle,	the	British	would	lose.	Instead	Nelson	decided	on	a
“divide	and	conquer”	strategy	whereby	the	British	force	formed	two	attacking	lines	of	ships
perpendicular	to	the	French–Spanish	line	(see	Fig.	3.14),	and	he	divided	Villeneuve’s	force
into	three	smaller	forces,	engaging	each	in	succession.

FIGURE	3.14	Nelson’s	ship	deployments	in	the	Battle	of	Trafalgar	(Nelson	H.,	1805).

In	the	next	example	we	examine	the	battle	using	the	Lanchester	combat	model,	and	in	so	doing
we	lend	support	to	Nelson’s	belief	that	a	traditional	battle	would	have	been	disastrous	for	the
British.



Example	3.11:

Use	the	Lanchester	model	to	predict	the	course	of	a	full	force	battle	between	the	British
and	French–Spanish	fleets.

With	the	British	forces	as	Red	and	the	French–Spanish	forces	as	Blue,	we	assume	
	and	 .	Like	Nelson	we	also	assume	that	the	British	were	more

effective	fighters	by	letting	 	and	 .	After	setting	our	parameters	to	the
correct	values	in	Excel,	the	output	shows	that	the	British	fleet	would	have	been
completely	destroyed	after	18	time	steps,	while	the	French–Spanish	fleet	would	have	been
left	with	12.4	ships	at	the	conclusion	of	the	battle.	See	Figure	3.15	for	the	Excel	results.

FIGURE	3.15	Model	projections	of	full	fleet	battle	between	British	and	French–Spanish
fleets.



We	know	from	a	memorandum	written	by	Nelson	prior	to	the	battle	what	he	planned	to	do
(Lanchester,	1956)	to	offset	the	French–Spanish	numbers	advantage,	though	his	plan	was	based
on	numbers	that	turned	out	to	be	slightly	off.	Prior	to	the	battle,	Nelson	believed	that	his	force
would	comprise	40	ships	while	Villeneuve’s	would	comprise	46.	(So	the	actual	numbers
advantage	possessed	by	the	French–Spanish	fleet	turned	out	to	be	greater	than	what	Nelson
believed.)	Nelson	planned	to	split	his	fleet	into	three	detachments	of	16,	16,	and	8	ships.	The
two	detachments	of	16	were	to	attack	Villeneuve’s	line:	one	about	a	quarter	of	the	way	from
the	rear	(about	12	ships	in)	and	the	other	in	the	center	(see	Fig.	3.16).

FIGURE	3.16	Nelson’s	original	plan	for	ship	deployments	before	the	Battle	of	Trafalgar.

Thus	a	force	of	32	British	ships	would	take	on	the	rear	23	ships	of	the	French–Spanish	fleet.
The	mission	of	the	remaining	8	British	ships	was	to	attack	just	ahead	of	the	center	of
Villeneuve’s	line	to	prevent	the	other	23	French–Spanish	ships	from	attacking	the	rear.	After
defeating	the	rear	half	of	the	French–Spanish	fleet,	the	remainder	of	the	entire	British	force
would	turn	to	fight	the	leading	half	of	Villeneuve’s	fleet.	Below	is	an	excerpt	from	Nelson’s
original	memorandum	outlining	his	strategy:



I	should	therefore	probably	make	the	Second	in	Command’s	signal	to	lead	through,	about
their	twelfth	Ship	from	their	Rear,	(or	wherever	he	could	fetch,	if	not	able	to	get	so	far
advanced);	my	Line	would	lead	through	about	their	Centre,	and	the	Advanced	Squadron	to
cut	two	or	three	or	four	Ships	ahead	of	their	Centre,	so	as	to	ensure	getting	at	their
Commander-in-Chief,	on	whom	every	effort	must	be	made	to	capture.

(Nelson	H.,	1805)

Next	we	examine	the	wisdom	of	Nelson’s	strategy	using	Lanchester’s	square	law.

Example	3.12:

Investigate	the	effect	of	Nelson’s	strategy	on	the	fighting	strengths	for	the	two	sides.

Here	the	strategy	is	important,	so	we	use	the	numbers	Nelson	assumed	rather	than	the
numbers	from	the	actual	battle.	Thus	initially	we	have	 	British	ships	and	

	French–Spanish	ships.	With	the	same	fighting	effectiveness	assumptions	as
before,	we	calculate	each	side’s	fighting	strength.	For	the	British	we	get	

	and	for	the	French–Spanish	 .	The
superior	fighting	strength	of	the	French–Spanish	fleet	again	suggests	they	would	have	won
a	full	force	battle.

By	dividing	the	French–Spanish	fleet	in	half,	Nelson	would	reduce	its	total	fighting
strength.	To	confirm	this	we	note	that	each	half	of	the	divided	French–Spanish	fleet	would
have	a	fighting	strength	of	 .	To	get	the	divided	fleet’s	total	fighting
strength,	we	add	the	fighting	strength	of	each	half	together	to	get	 .
Thus	by	dividing	the	French–Spanish	fleet	into	two	smaller	fleets,	Nelson	could	reduce	its
total	fighting	strength	from	169.28	to	84.64—half	of	its	original.

Nelson’s	fleet	on	the	other	hand	was	to	be	divided	into	an	attacking	force	of	32	(both
detachments	of	16	attacking	one	half	of	the	French–Spanish	fleet	together)	and	a	force	of
8.	The	total	fighting	strength	of	Nelson’s	divided	fleet	would	thus	be

Since	the	British	fighting	strength	of	108.8	is	now	greater	than	the	French–Spanish	fighting
strength	of	84.64,	Nelson’s	fleet	would	now	have	the	advantage.

Nelson’s	strategy	provides	some	evidence	that	he	was	at	least	intuitively	aware	of	something
akin	to	Lanchester’s	square	law.	For	one	thing,	Nelson’s	decision	to	divide	the	French–Spanish
fleet	in	two	equal	halves	is	exactly	the	point	that	the	square	law	implies	would	be	the	ideal
point.	(The	reader	is	asked	to	verify	this	claim	in	the	exercises.)

In	addition,	the	square	law	predicts	that	Nelson’s	decision	to	use	32	ships	as	his	main	attacking



force	would	have	left	him	with	just	enough	fighting	strength	to	defeat	the	two	23-ship	fleets	of
the	French–Spanish	in	succession	even	if	Nelson’s	remaining	8	ships	were	lost.	To	see	this	we
perform	the	same	calculation	as	in	Example	3.10,	only	this	time	with	the	numbers	from
Nelson’s	plan.	The	result	of	those	calculations	is	that	after	the	first	battle	of	32	versus	23,	the
British	would	be	left	with	a	fleet	of	approximately

Even	if	no	ships	remained	from	Nelson’s	detachment	of	eight,	he	would	still	expect	to	prevail.

Next	we	use	our	Lanchester	Excel	model	to	analyze	the	Battle	of	Trafalgar	as	it	actually
occurred.	During	the	battle	Nelson’s	fleet	successfully	divided	the	French–Spanish	fleet	of	33
into	three	smaller	fleets	of	3,	17,	and	13	ships	(see	Fig.	3.14).	Nelson	dispatched	13	of	his	27
ships	to	destroy	the	force	of	3	first.	This	initial	battle	ended	quickly.	It	was	followed	by	all
remaining	British	ships	joining	forces	to	fight	the	French–Spanish	force	of	17	and	then	the	third
and	final	battle	against	the	force	of	13.	We	now	see	how	the	Lanchester	model	predictions
agree	with	the	known	results.

Example	3.13:

Use	the	Lanchester	Excel	model	to	project	the	course	of	the	Battle	of	Trafalgar.

For	the	first	battle	we	set	 	and	 .	The	Excel	results	in	Figure	3.17	show
that	the	model	predicts	the	battle	would	end	after	two	time	steps	with	the	British	retaining
12.6	of	their	original	13	ships.	Here	we	interpret	a	decimal	value	as	indicating	a	partial
casualty.	This	could	take	the	form	of	either	substantial	damage	to	a	single	ship	or	very
minor	damage	to	several	ships.



FIGURE	3.17	Lanchester	model	for	the	Battle	of	Trafalgar:	the	first	engagement.

Next	Nelson	sends	the	14	ships	that	had	been	held	in	reserve	together	with	the	12.6
survivors	from	the	first	battle	to	take	on	the	force	of	17	French–Spanish	ships.	Thus	we
reset	our	model	so	that	 	and	 .	As	shown	in	Figure	3.18,	the	model
again	predicts	a	swift	and	decisive	victory	for	the	British,	this	time	with	5.4	casualties
leaving	21.2	ships	in	the	British	force.



FIGURE	3.18	Lanchester	model	for	the	Battle	of	Trafalgar:	the	second	engagement.

Finally	Nelson’s	strategy	requires	the	remaining	21.2	British	ships	to	engage	the	final	13
French–Spanish	ships.	Again	we	reset	the	model	to	 	and	 	with	the
result	that	the	British	win	convincingly	again	with	17.2	of	the	original	27	ships	still
remaining.

The	Lanchester	model	predictions	validate	Nelson’s	plan:	an	almost	sure	defeat	was	turned
into	a	decisive	victory	through	the	employment	of	better	strategy	and	tactics.	In	fact,	the	results
of	the	actual	battle	were	even	more	one	sided	with	the	British	not	losing	a	single	ship	(Battle
of	Trafalgar,	2015),	though	Admiral	Nelson	was	killed.	We	note	that	this	is	not	necessarily	at
odds	with	our	model	predictions	since	27	ships	with	substantial	damage	could	result	in	17.2
“active	units.”

In	the	next	section	we	analyze	the	Lanchester	model’s	equilibrium	points.



3.1.4	Equilibrium	Points
In	Chapter	1	we	learned	about	equilibrium	values:	values	at	which	a	discrete	dynamical
system	does	not	change.	We	extend	that	idea	now	to	discrete	dynamical	systems	with	two
dependent	variables.	In	this	context	we	speak	of	equilibrium	points,	points	(B*, R*)	such	that	if
we	plug	both	values	B*	and	R*	into	our	DDS	at	the	same	time,	the	DDS	does	not	change.	For
the	basic	Lanchester	model,	this	means	an	equilibrium	point	will	be	any	point	(B*, R*)	such
that

To	actually	find	any	equilibrium	points,	we	need	to	solve	the	system	of	equations	for	B*	and
R*.

It	turns	out	that	the	basic	Lanchester	model	has	only	one	equilibrium	point	and	that	is	where
both	Blue	and	Red	are	destroyed.	To	verify	this	claim	we	solve	for	the	values	(B*, R*)	such
that

The	system	reduces	to

Since	r	and	b	must	be	positive,	we	see	the	only	solution	is

Recall,	though,	that	we	modified	the	basic	Lanchester	model	in	Excel	to	make	it	more	realistic.
Specifically,	we	added	IF	statements	that	would	“turn	off”	the	model	once	either	side’s	forces
became	negative.	Those	IF	statements	introduce	infinitely	many	equilibrium	points	into	the
model,	namely,	any	point	where	one	of	the	forces	becomes	zero.	At	such	a	point	the	other	force
can	be	any	nonnegative	number,	and	the	system	will	still	remain	constant.

Analytically	determining	the	stability	properties	of	equilibrium	points	when	we	have	two	or
more	dependent	variables	involves	techniques	from	linear	algebra	that	are	beyond	the	scope	of
this	text.	Instead	we	will	proceed	as	we	did	in	Chapter	1	and	determine	stability	graphically
using	Excel.	The	difference	here	is	that	the	presence	of	two	dependent	variables	means	we
will	need	a	new	kind	of	graph	to	do	so.	We	introduce	this	new	type	of	graph	in	the	next	section.

3.1.5	Section	Exercises
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1.	 Suppose	Blue	begins	a	battle	with	200	units,	so	 ,	and	Red	begins	the	battle	with
100	units,	so	 .	Each	Blue	unit	has	a	fighting	effectiveness	of	 ,	and	each
Red	unit	has	a	fighting	effectiveness	of	 .

a.	 Determine	by	hand	the	numbers	of	Blue	and	Red	forces	remaining	after	two	time	steps.

b.	 Determine	the	eventual	victor	and	how	many	forces	remain	at	the	end	of	the	battle.

2.	 Suppose	Blue	initially	has	100	units	and	a	fighting	effectiveness	of	 .	Red	has	a
fighting	effectiveness	of	 .	Determine	how	many	units	Red	needs	to	achieve	parity
with	Blue.

3.	 For	the	parameters	given	in	Exercise	1,	determine	the	following:

a.	 The	relative	losses	sustained	by	each	side	during	the	first	time	step

b.	 The	fractional	exchange	ratio	(FER)

c.	 The	fighting	strengths	of	each	side

d.	 The	eventual	victor	based	on	the	FER

e.	 The	eventual	victor	based	on	the	fighting	strengths

f.	 How	do	your	answers	in	(d)	and	(e)	compare	to	the	result	found	in	Exercise	1b?

4.	 Suppose	Blue	initially	has	500	units	and	a	fighting	effectiveness	of	 .	Red	initially
has	450	units	and	a	fighting	effectiveness	of	 .	Determine	the	following:

a.	 The	relative	losses	sustained	by	each	side	during	the	first	time	step

b.	 The	fractional	exchange	ratio	(FER)

c.	 The	fighting	strengths	of	each	side

d.	 The	eventual	victor	based	on	the	FER

e.	 The	eventual	victor	based	on	the	fighting	strengths

5.	 Suppose	Red	has	200	units	and	a	fighting	effectiveness	of	 .	If	Blue	has	a	fighting
effectiveness	of	 ,	how	many	forces	would	Blue	need	initially	to	completely	put
Red	out	of	action	in	the	first	time	step?

6.	 Suppose	that	150	Blue	units	engage	80	Red	units	where	the	Red	units	are	more	effective
fighters	with	 	and	 .

a.	 Use	fighting	strength	to	predict	the	winner.

b.	 Use	Lanchester’s	square	law	to	estimate	the	number	of	units	remaining	for	the	winner.

c.	 Compare	your	results	in	(a)	and	(b)	to	the	Lanchester	Excel	model	projections.

7.	 Suppose	that	500	Blue	units	engage	420	Red	units	where	the	Red	units	are	more	effective
fighters	with	 	and	 .

a.	 Use	fighting	strength	to	predict	the	winner.



b.	 Use	Lanchester’s	square	law	to	estimate	the	number	of	units	remaining	for	the	winner.

c.	 Compare	your	results	in	(a)	and	(b)	to	the	Lanchester	Excel	model	projections.

8.	 Suppose	that	Blue	and	Red	engage	in	a	battle	and	that	the	victor	must	then	fight	Green.	Blue
initially	has	500	units	and	a	fighting	effectiveness	of	 .	Red	initially	has	550	units
and	a	fighting	effectiveness	of	 .	Green	initially	has	200	units	and	a	fighting
effectiveness	of	 .	Use	Lanchester’s	square	law	to	predict	the	eventual	victor	and
how	many	forces	the	victor	has	remaining.

9.	 Extension:	Suppose	there	is	a	three-way	battle	among	Red,	Blue,	and	Green	forces.
Develop	a	modification	of	the	Lanchester	model	for	this	situation.	You	may	want	to
introduce	additional	parameters.

10.	 Extension:	Modify	the	basic	Lanchester	model	to	include	“foxholes”	for	one	or	both	of	the
combatants.	Consider	a	foxhole	to	be	a	safe	place	where	a	unit	can	still	attack	the	opposing
side	but	cannot	be	harmed.

11.	 Extension:	Suppose	that	like	Admiral	Nelson,	Blue	aims	to	employ	a	divide	and	conquer
strategy	against	Red	in	an	upcoming	battle.	Show	that	dividing	the	Red	forces	into	two
equal	halves	minimizes	the	total	fighting	strength	of	the	two	divided	forces.

12.	 Extension:	Show	that	the	optimal	way	to	divide	an	opposing	force	into	three	smaller	forces
is	to	divide	the	force	into	three	equal	forces.

13.	 Extension:	Determine	the	limit	for	how	much	a	divide	and	conquer	strategy	can	diminish	a
force’s	total	fighting	strength.	To	do	so	consider	an	initial	force	of	N	units	divided	into	N
forces	of	1	unit	each.	In	other	words,	each	unit	must	fight	the	enemy	alone.

14.	 Extension:	Suppose	in	the	Battle	of	Trafalgar	that	Nelson	was	able	to	employ	the	ultimate
divide	and	conquer	strategy	from	Exercise	13	and	could	fight	each	French–Spanish	ship
individually.	Determine	how	large	a	French–Spanish	fleet	Nelson	could	defeat	in	this
scenario.

3.2	PHASE	PLANE	GRAPHS
A	phase	plane	graph	provides	a	convenient	way	of	visualizing	the	behavior	of	any	two-
compartment	DDS	over	time.	Recall	that	at	each	time	t,	we	get	a	value	for	each	of	our	two
dependent	variables,	and	we	can	represent	these	two	values	as	a	single	point	(B(t), R(t)).	The
idea	is	that	instead	of	the	x-axis	representing	time	as	in	our	usual	kind	of	graph,	we	put	the
dependent	variable,	B,	on	the	x-axis	and	the	dependent	variable,	R,	on	the	y-axis.	Time	does
not	appear	explicitly	on	the	graph.	However,	for	every	time	t,	we	get	a	new	point	(B(t), R(t)),
and	we	see	the	effect	of	time	as	the	points	trace	out	a	trajectory	in	the	B,R-plane.	We	note	that
if	we	start	a	trajectory	at	an	equilibrium	point,	the	trajectory	will	end	up	as	a	single	point	in	the
phase	plane	since	such	points	do	not	change	over	time.

We	illustrate	how	to	create	such	a	graph	in	Excel	with	our	next	example.



Example	3.14:

Recall	the	parameters	from	the	second	engagement	in	the	Battle	of	Trafalgar:	 ,
,	 ,	and	 .	Graph	the	trajectory	of	the	engagement	in	the	B,R-plane.

E.12	Phase	Plane	Graphs

In	this	Excel	section	we	show	how	to	create	phase	plane	graphs.

After	entering	the	relevant	parameters	into	Excel,	we	get	the	output	shown	in	Figure
3.19.



FIGURE	3.19	Excel	Lanchester	output	for	Example	3.14.

To	graph	the	trajectory	of	this	output	in	the	B,R-plane,	we	first	select	only	the
columns	for	B	and	R	using	the	thick	cross	pointer.	From	there	we	select	our	usual	kind



of	graph:	a	scattergraph	with	straight	lines	and	markers.	Excel	will	automatically	use
B	for	the	horizontal	axis	and	R	for	the	vertical	axis,	so	the	graph	produced	will	be	in
the	B,R-plane.	By	selecting	the	Add	Chart	Element	drop-down	from	the	Chart	Design
tab,	we	add	axis	labels	and	a	chart	title	to	make	the	graph	easier	to	understand.	Our
finished	graph	is	shown	in	Figure	3.20.

FIGURE	3.20	Excel	phase	plane	graph	for	Example	3.14.

When	viewing	a	phase	plane	trajectory	in	Excel,	it	is	not	immediately	obvious	which
way	the	trajectory	is	being	traced	out	as	time	goes	on.	The	direction	must	be
discerned	through	inspection.	If	we	use	our	pointer	to	hover	over	a	point	on	an	Excel
graph,	a	pop-up	reveals	the	coordinates	of	the	point.	Figure	3.21	shows	what	this
pop-up	looks	like.



FIGURE	3.21	Determining	the	starting	point	of	a	trajectory	on	the	phase	plane	graph.

Note	that	the	point	in	the	upper	right	of	the	graph	is	our	initial	point	
.	Thus	the	trajectory	moves	down	and	to	the	left	over	time,

eventually	ending	at	a	point	on	the	R-axis,	indicating	a	victory	for	Red	with	0	Blue
forces	remaining.

To	realize	the	full	potential	of	a	phase	plane	graph,	we	set	it	up	to	graph	multiple	trajectories
on	the	same	graph.	In	other	words	we	choose	many	different	starting	points	and	let	the	graph
show	us	the	fate	of	the	system	for	each	choice.	In	this	way	we	get	a	global	view	for	the
behavior	of	the	model.

Example	3.15:

Create	and	analyze	a	phase	plane	diagram	with	multiple	trajectories.

E.13	Phase	Planes	with	Multiple	Trajectories

In	this	Excel	section	we	show	how	to	add	multiple	trajectories	to	a	phase	plane
graph.



In	order	to	graph	multiple	trajectories	at	once,	we	must	first	create	model	output	for
multiple	initial	points.	Here	we	select	the	three	separate	engagements	for	the	Battle	of
Trafalgar	for	our	three	trajectories.	We	make	columns	for	each	engagement	and	note
that	for	each	of	the	engagements	the	Blue	and	Red	forces	began	with	different
numbers	of	ships.	The	Excel	setup	for	this	is	shown	in	Figure	3.22.

FIGURE	3.22	Excel	model	setup	for	graphing	multiple	trajectories	in	the	phase
plane.

Next	we	copy	the	model	formulas	over	horizontally	making	sure	to	copy	the	formulas
for	both	Red	and	Blue	simultaneously.	Once	that	is	done	we	copy	the	four	new
formulas	down,	and	we	are	ready	to	graph	the	results.

We	select	all	columns	(except	time)	including	the	headings.	We	select	Insert	Scatter
from	the	Charts	drop-down	menu,	but	this	time	we	must	select	“More	Scatter	Charts”
at	the	bottom	of	the	drop-down.	From	there	we	select	the	style	on	the	right-hand	side
along	with	Straight	Lines	with	Markers.	Then	we	click	okay,	and	after	some
formatting	we	get	the	graph	in	Figure	3.23.



FIGURE	3.23	Excel	phase	plane	graph	with	multiple	trajectories.

The	three	trajectories	in	the	graph	show	the	fate	of	each	of	the	three	engagements
within	the	Battle	of	Trafalgar.	All	begin	with	the	upper	rightmost	point,	and	all
terminate	on	the	Red	axis	indicating	the	three	British	victories.

We	conclude	this	section	with	a	phase	plane	diagram	that	shows	the	trajectories	for	more	than
a	hundred	possible	starting	points.	This	diagram	uses	the	fighting	effectiveness	parameters
from	the	Battle	of	Trafalgar	and	is	given	in	Figure	3.24.



FIGURE	3.24	Excel	phase	plane	trajectories	for	more	than	100	initial	points.

Each	trajectory	represents	the	model’s	projection	for	a	battle	with	a	different	initial	number	of
forces	for	Red	and	Blue.	All	trajectories	that	terminate	along	the	Blue	axis	represent	initial
force	levels	that	would	have	led	to	a	French–Spanish	victory.	All	trajectories	that	terminate
along	the	Red	axis	represent	force	levels	that	would	have	led	to	a	British	victory.	Notice	that
the	heavy	black	diagonal	line	seems	to	be	a	dividing	line.	Above	this	line	we	get	British
victories	and	below	it	we	get	French–Spanish	victories.	This	line	is	in	fact	exactly	the	set	of
initial	points	where	the	FER	equals	one.	Any	point	above	the	line	represents	an	FER	greater
than	one	and	hence	a	Red	victory.	Any	point	below	the	line	represents	an	FER	less	than	one
and	hence	a	Blue	victory.	If	we	start	a	battle	on	this	line,	it	will	terminate	at	the	origin	with
mutual	destruction.

We	can	find	the	equation	for	the	FER = 1	line	by	using	Lanchester’s	square	law.	The	formula
for	FER	implies	that	if	FER = 1	at	the	outset	of	the	battle,	then	 .	This	in	turn
implies	that	 .	By	Lanchester’s	square	law	we	know	that	for	all	t,

Thus	for	all	t	we	have	 ,	so	 ,	which	further	implies	that	

.	However,	only	the	positive	root	is	of	interest	here.

What	we	have	shown	is	that	as	Blue	and	Red	march	toward	mutual	destruction,	they	do	so

along	the	line	in	the	B,R-phase	plane	that	has	slope	 .	We	note	also	that	this	is	an	unstable



situation	because	any	slight	advantage	gained	by	one	side	over	the	other	will	tip	the	entire
battle.

3.2.1	Section	Exercises

1.	 Suppose	Blue	begins	a	battle	with	200	units,	so	 ,	and	Red	begins	the	battle	with
100	units,	so	 .	Each	Blue	unit	has	a	fighting	effectiveness	of	 ,	and	each
Red	unit	has	a	fighting	effectiveness	of	 .

a.	 Determine	the	eventual	victor	by	plotting	the	trajectory	of	the	battle	in	the	B,R-phase
plane.

b.	 Explain	how	the	result	in	(a)	indicates	the	eventual	victor.

c.	 Produce	a	phase	plane	diagram	showing	the	fate	of	several	battles	for	different	initial
numbers	of	Blue	and	Red	forces.

d.	 Find	the	FER = 1	line.

e.	 Plot	a	trajectory	of	mutual	destruction	in	the	B,R-phase	plane.

2.	 Suppose	Blue	begins	a	battle	with	150	units,	so	 ,	and	Red	begins	the	battle	with
150	units,	so	 .	Each	Blue	unit	has	a	fighting	effectiveness	of	 ,	and	each
Red	unit	has	a	fighting	effectiveness	of	 .

a.	 Determine	the	eventual	victor	by	plotting	the	trajectory	of	the	battle	in	the	B,R-phase
plane.

b.	 Explain	how	the	result	in	(a)	indicates	the	eventual	victor.

c.	 Produce	a	phase	plane	diagram	showing	the	fate	of	several	battles	for	different	initial
numbers	of	Blue	and	Red	forces.

d.	 Find	the	FER = 1	line.

e.	 Plot	a	trajectory	of	mutual	destruction	in	the	B,R-phase	plane.

3.3	THE	LANCHESTER	MODEL	WITH
REINFORCEMENTS
In	the	last	section	we	saw	that	when	two	sides	have	equal	fighting	strengths,	the	battle	will
result	in	mutual	destruction.	However,	we	also	noted	that	any	advantage,	however	slight,	that
one	side	can	achieve	over	the	other	in	fighting	strength	will	tip	the	battle	in	their	favor.	Another
way	to	tip	the	balance	of	the	battle	would	be	for	one	side	to	send	reinforcements	to	the	aid	of
their	initial	units.

In	this	section	we	modify	the	Lanchester	model	to	allow	for	reinforcements.	Reinforcements
are	accounted	for	by	a	constant	parameter	representing	the	average	number	of	new	units
entering	the	battle	at	each	time	step.	Let	f	and	w	be	the	respective	numbers	of	reinforcements



for	Blue	and	Red	for	each	time	step.	Then	in	our	flow	diagram,	we	represent	these
reinforcements	by	adding	inward	pointing	arrows	as	shown	in	Figure	3.25.

FIGURE	3.25	Flow	diagram	for	Lanchester	model	with	reinforcements.

The	corresponding	DDS	for	our	new	model	is	given	by

Incorporating	this	refinement	of	the	basic	Lanchester	model	in	Excel	is	a	matter	of	including
the	two	new	parameters	for	reinforcements	and	adjusting	the	formulas	for	the	Blue	and	Red
forces	accordingly.	The	Excel	setup	and	formula	versions	are	shown	in	Figures	3.26	and	3.27.



FIGURE	3.26	Lanchester	with	reinforcements	Excel	setup.

FIGURE	3.27	Lanchester	with	reinforcements	Excel	with	formulas	displayed.

Next	we	give	a	computational	example.



Example	3.16:

Model	the	course	of	a	battle	if	Blue	initially	has	75	forces	and	Red	has	100.	Assume	the
fighting	effectiveness	for	Blue	is	 	and	for	Red	is	 .	At	each	time	step	3
units	of	reinforcements	arrive	for	Blue	and	2	for	Red.

Here	we	need	to	plug	all	parameter	values	into	Excel	and	observe	the	output.	We	see	from
the	output	in	Figure	3.28	that	Red	will	win	the	battle	in	13	time	steps	and	will	have	28.5
units	remaining.

FIGURE	3.28	Lanchester	with	reinforcements	Excel	output	for	Example	3.16.

Note	that	the	number	of	Blue	forces	turns	negative	at	step	13,	which	is	a	physically
meaningless	result.	We	can	avoid	such	output	by	employing	an	IF	statement	to	turn	the	model
off	as	we	did	for	the	original	Lanchester	model.

3.3.1	Equilibrium	Points	and	Global	Behavior
To	find	any	equilibrium	points	for	the	model,	we	must	solve	the	system

for	B*	and	R*.	After	simplifying	both	equations,	we	get



This	leads	to	only	one	solution:

The	next	example	shows	the	basic	calculation.

Example	3.17:

Find	the	equilibrium	points	for	the	previous	example	and	verify	them	with	Excel.

For	Blue	we	get	 ,	and	for	Red	we	get	 .	Plugging
these	values	into	Excel	for	our	initial	numbers	of	forces,	we	note	that	the	model	does	not
change	from	that	point.	By	trying	different	initial	numbers	that	are	slightly	higher	or
slightly	lower	than	the	equilibrium	values,	we	see	that	the	equilibrium	point	appears	to	be
unstable.

We	conclude	this	section	by	noting	that	including	an	IF	statement	like	the	one	in	the	case	of	the
original	Lanchester	Excel	model	does	not	introduce	any	new	equilibrium	points	here.	The
continual	replenishment	on	both	sides	by	reinforcements	prevents	such	points	from	being
equilibrium	points.	For	this	model	a	more	practical	IF	statement	might	be	one	that	completely
turns	off	the	model	when	a	side	falls	below	zero.	In	this	case	the	Excel	model	would	report
negative	values	as	zero	and	would	also	turn	off	the	addition	of	reinforcements	for	both	forces.
An	exercise	at	the	end	of	this	section	asks	the	reader	to	add	such	an	IF	statement	to	the
reinforcements	model.

3.3.2	The	Battle	of	Iwo	Jima
Real	data	is	difficult	to	come	by	when	trying	to	validate	a	combat	model.	The	nature	of	warfare
makes	it	very	difficult	to	collect	reliable	data	in	the	first	place,	and	when	it	is	collected,	it	is
often	classified	information.	One	of	the	few	examples	of	a	major	historical	battle	for	which	we
do	have	data	available	is	the	Battle	of	Iwo	Jima,	where	US	forces	captured	the	island	of	Iwo
Jima	off	the	coast	of	Japan	from	the	Japanese	in	World	War	II.

In	his	paper	A	Verification	of	Lanchester’s	Law,	J.H.	Engel	presents	a	detailed	discussion	of
fitting	the	Lanchester	model	to	the	available	data	from	Iwo	Jima	with	very	good	results	(Engel,
1954).	Data	provided	by	Captain	Clifford	P.	Morehouse	in	The	Iwo	Jima	Operation
(Morehouse,	1946)	indicates	that	the	United	States	landed	54,000	troops	on	the	first	day	of	the



battle	and	that	there	were	21,500	Japanese	troops	on	the	island.	Thus	we	have	
and	 .	We	also	know	that	the	United	States	landed	reinforcements	during	the
battle:	6,000	on	day	2	and	13,000	on	day	5.	Note	that	as	we	would	expect,	reinforcements	did
not	arrive	at	a	constant	rate	as	we	assumed	in	the	previous	section.	We	need	to	modify	our
spreadsheet	similar	to	the	way	we	handled	irregular	future	payments	in	the	present	value
section	of	Chapter	2:	we	give	reinforcements	their	own	column	and	enter	any	reinforcements
by	hand	on	the	appropriate	day.	The	Japanese	had	no	reinforcements.	Time	units	are	given	in
days.	In	Figure	3.29	we	show	the	setup	of	our	Excel	spreadsheet	with	formulas	displayed.

FIGURE	3.29	Lanchester	with	variable	reinforcements	Excel	model.

We	readily	see	that	the	United	States	possessed	a	substantial	numbers	advantage	over	the
Japanese	both	initially	and	with	the	reinforcements	but	that	advantage	was	partially	offset	by
the	superior	fighting	effectiveness	of	the	Japanese	troops.	Engel	determined	that	 	and

.	Thus	each	active	US	troop	on	average	was	responsible	for	killing	0.0088	Japanese
troops	per	day,	while	each	active	Japanese	troop	on	average	was	responsible	for	killing
0.0113	US	troops	per	day.	The	Japanese	troops	were	thus	 	times	as
effective	as	the	US	troops.	However,	as	we	will	see	in	the	next	example,	that	effectiveness
advantage	was	not	nearly	great	enough	to	overcome	the	superior	numbers	of	the	United	States.

Example	3.18:

Use	the	variable	reinforcement	model	with	troop	data	from	above	to	project	the	course	of
the	Battle	of	Iwo	Jima.

The	setup	and	output	of	the	model	simulation	(with	most	rows	hidden)	are	shown	in
Figure	3.30.



FIGURE	3.30	Model	output	for	the	Battle	of	Iwo	Jima.

The	output	shows	a	battle	that	lasted	37	days	with	68,376	US	troops	remaining	and	0
Japanese	troops	remaining.	Since	a	total	of	73,000	US	troops	participated	in	the	battle,
we	have	a	total	of	4,624	US	fatalities	as	compared	to	21,500	fatalities	for	the	Japanese.
These	figures	agree	remarkably	well	with	the	actual	historical	data	from	the	battle:	the
battle	lasted	36	days	with	4590	US	fatalities,	and	all	Japanese	troops	killed.	Of	course	we
should	emphasize	that	the	remarkable	fit	of	the	model	to	the	data	is	due	to	parameters
being	estimated	after	the	fact.	Due	to	the	nature	of	warfare,	it	is	very	difficult	if	not
impossible	to	estimate	parameters	accurately	beforehand.

It	is	interesting	to	see	how	the	model-predicted	outcome	would	have	been	different	had	the
United	States	not	supplied	reinforcements.



Example	3.19:

Predict	the	course	of	the	Battle	of	Iwo	Jima	had	the	United	States	not	sent	reinforcements.

In	this	scenario	we	keep	all	model	parameters	the	same	except	that	we	delete	all	entries	in
the	reinforcements	column	for	Blue.	We	find	that	the	eventual	outcome	of	the	battle	would
not	have	changed,	but	it	would	have	taken	about	49	days	for	the	United	States	to	win	and	it
would	have	cost	nearly	5926	US	lives.	(See	output	in	Fig.	3.31.)

FIGURE	3.31	Model	projection	for	the	Battle	of	Iwo	Jima	assuming	no	reinforcements.

The	reinforcements,	though	not	crucial	to	secure	victory,	allowed	the	United	States	to	do
so	while	saving	approximately	1300	US	soldiers.

In	the	next	section	we	turn	our	attention	to	a	naval	combat	model	due	to	Hughes.

3.3.3	Section	Exercises

1.	 Model	the	course	of	a	battle	if	Blue	initially	has	250	forces	and	Red	has	230.	Assume	the
fighting	effectiveness	for	Blue	is	 	and	for	Red	is	 .	At	each	time	step	5	units
of	reinforcements	arrive	for	Blue	and	4	for	Red.

a.	 Determine	by	hand	the	numbers	of	Blue	and	Red	forces	remaining	after	two	time	steps.



b.	 Determine	the	eventual	victor	and	how	many	forces	remain	at	the	end	of	the	battle.

2.	 Model	the	course	of	a	battle	if	Blue	initially	has	100,000	forces	and	Red	has	12,000.
Assume	the	fighting	effectiveness	for	Blue	is	 	and	for	Red	is	 .	At	each	time
step	200	units	of	reinforcements	arrive	for	Blue	and	50	for	Red.

a.	 Determine	by	hand	the	numbers	of	Blue	and	Red	forces	remaining	after	two	time	steps.

b.	 Determine	the	eventual	victor	and	how	many	forces	remain	at	the	end	of	the	battle.

3.	 Determine	the	equilibrium	point	for	the	situation	described	in	Exercise	1.	Confirm	the
result	with	Excel.

4.	 Determine	the	equilibrium	point	for	the	situation	described	in	Exercise	2.	Confirm	the
result	with	Excel.

5.	 Use	Excel	to	determine	the	stability	of	the	equilibrium	point	in	Exercise	3.

6.	 Use	Excel	to	determine	the	stability	of	the	equilibrium	point	in	Exercise	4.

7.	 Blue	initially	has	100,000	forces	and	Red	has	15,000.	Assume	the	fighting	effectiveness	for
Blue	is	 	and	for	Red	is	 .	Assuming	that	Red	has	no	reinforcements,
determine	how	many	reinforcements	Blue	needs	per	day	in	order	to	secure	victory.

8.	 Extension:	Blue	initially	has	100,000	forces	and	Red	has	5,000.	Assume	the	fighting
effectiveness	for	Blue	is	 	and	for	Red	is	 .	Blue	wishes	to	steadily
withdraw	troops	from	this	battle	and	deploy	them	elsewhere.

a.	 Assuming	that	Red	has	no	reinforcements,	determine	how	many	troops	per	day	Blue	can
withdraw	while	still	securing	victory.

b.	 Determine	how	many	additional	Blue	casualties	result	from	the	withdrawal	strategy.

9.	 Extension:	Incorporate	appropriate	IF	statements	in	the	Lanchester	reinforcements	model
to	turn	off	the	model	once	one	side	reaches	a	force	level	of	0.

10.	 Extension:	Noncombat	losses	include	such	things	as	accident	and	illness	and	are	often	a
large	part	of	total	overall	casualties.	Assume	that	noncombat	losses	are	proportional	to	the
size	of	the	force—the	larger	the	force,	the	more	accidents	and	illnesses	there	will	be.
Modify	the	basic	Lanchester	model	to	include	noncombat	losses	and	include	an	equilibrium
analysis.

11.	 Extension:	Modify	the	Lanchester	model	with	reinforcements	to	include	noncombat	losses.
Implement	the	model	in	Excel	and	carry	out	an	equilibrium	analysis.

3.4	HUGHES	AIMED	FIRE	SALVO	MODEL
In	military	terms,	a	salvo	is	the	simultaneous	discharge	of	weaponry.	For	(nonsubmarine)	naval
combat,	this	usually	means	the	firing	of	surface-to-surface	antiship	cruise	missiles	(ASCMs).
Thinking	of	a	naval	battle	as	a	succession	of	salvos	means	we	are	assuming	the	battle	proceeds
in	discrete	steps.	Thus	a	DDS	is	the	appropriate	type	of	model	to	use	to	model	naval	salvo



combat.

In	1995	Wayne	P.	Hughes	Jr.	(Hughes,	1995)	applies	his	salvo	model,	originally	presented	in
his	book	Fleet	Tactics:	Theory	and	Practice	(Hughes,	1986),	to	the	problem	of	comparing
“the	military	worth	of	warship	capabilities”	(Hughes,	1993).	The	four	attributes	included	in
Hughes’	model	are	(i)	number	of	force,	(ii)	offensive	firepower	per	unit,	(iii)	defensive	power
per	unit,	and	(iv)	staying	power	per	unit.	We	understand	offensive	firepower	to	mean	the
number	of	well-aimed	ASCMs	launched	per	unit	per	salvo.	The	defensive	power	is	the	number
of	well-aimed	surface-to-air	missiles	launched	per	unit	per	salvo,	and	so	it	represents	how
many	enemy	ASCMs	a	unit	can	destroy	before	they	hit	their	target.	Finally	the	staying	power	of
a	ship	is	the	number	of	missile	hits	a	ship	can	sustain	before	it	is	put	out	of	action.

The	parameters	we	use	to	represent	each	attribute	for	each	side	are	summarized	in	Table	3.1.

TABLE	3.1	Force	Attributes	for	the	Hughes	Salvo	Model

Attribute Blue Red
Offensive	firepower b r
Defensive	power c s
Staying	power d u

Considering	Blue	first,	we	note	that	at	time	t	the	number	of	incoming	missiles	from	Red	will
equal	 .	These	are	all	potential	hits	on	Blue,	but	not	all	of	them	will	strike.	Some	of	the
incoming	missiles	will	be	intercepted	by	Blue,	the	exact	number	being	 .	Thus	the	total
number	of	actual	missile	hits	that	Blue	will	endure	with	each	salvo	is	given	by	

.	Since	it	takes	more	than	one	missile	hit	to	put	a	ship	out	of	action,	to	find
the	number	of	lost	units	per	salvo	for	Blue,	we	have	to	divide	the	total	hits	by	the	number	of
hits	it	takes	to	disable	a	Blue	ship,	namely,	d.	Putting	all	of	this	together,	we	see	that	the	total
number	of	lost	units	per	salvo	for	Blue	will	be	given	by

Thus	the	DDS	equation	for	Blue	is

Using	the	same	reasoning	for	the	number	of	Red	units,	we	arrive	at	the	complete	DDS	for	the
Hughes	salvo	model:



To	implement	the	Hughes	model	in	Excel,	we	need	cells	for	each	of	our	six	parameters,	and	we
need	to	be	careful	with	our	cell	references	when	entering	the	formulas	for	Blue	and	Red.	In
Figure	3.32	we	see	the	Excel	setup,	followed	by	a	version	with	the	formula	for	Blue	showing
in	Figure	3.33.

FIGURE	3.32	Hughes	Excel	model	setup.

FIGURE	3.33	Hughes	Excel	model	with	formula	for	Blue	units.

Just	like	for	the	Lanchester	model,	we	have	to	be	careful	to	deal	only	with	values	that	make
physical	sense:	we	cannot	have	a	negative	number	of	ships.	There	is	a	second	restriction	for
the	Hughes	model	though:	the	number	of	ships	lost	in	each	salvo	must	also	be	nonnegative.



Considering	the	Blue	side,	for	example,	we	summarize	both	conditions	with	the	inequality
below:

The	first	inequality	sign	requires	that	the	number	of	ships	lost	by	Blue	is	nonnegative,	and	the
second	inequality	sign	ensures	that	the	number	of	ships	lost	does	not	exceed	the	number	of
ships	Blue	has.	For	the	Red	side	the	corresponding	inequality	would	be

Adding	these	restrictions	to	our	Excel	spreadsheet	is	slightly	more	complicated	than	for	the
Lanchester	model	and	makes	use	of	nested	“IF”	statements.

E.14	Nested	IF	Statements
At	each	step	in	our	Hughes	model,	we	have	to	check	the	two	conditions	for	the	number	of
ships	lost	by	a	side:	it	has	to	be	nonnegative,	and	it	has	to	be	less	than	the	number	of	extant
ships.	This	means	we	have	to	check	two	conditions	and	then	tell	Excel	what	to	do	if	the
conditions	are	satisfied	and	what	to	do	if	they	are	not.

In	the	case	of	the	first	condition,	if	the	number	of	ships	lost	by	Blue	is	ever	negative,	then
we	assume	no	Blue	ships	are	lost	and	we	enter	 	as	the	number	of	Blue	ships;
otherwise	we	use	the	number	given	by	the	model.	For	the	second	condition,	if	the	number
of	ships	lost	by	Blue	ever	exceeds	the	number	of	ships	Blue	has,	then	we	assume	all	Blue
ships	are	eliminated	and	enter	a	“0”	for	the	number	of	ships	for	Blue;	otherwise	we	use
the	number	given	by	the	model.

A	nested	IF	statement	is	an	efficient	way	to	get	Excel	to	check	multiple	conditions	by
using	one	IF	command	inside	another.	The	basic	structure	is	“IF(first	condition	holds,	do
this,	otherwise	check	IF(2nd	condition	holds,	do	this,	otherwise	do	that)).”	For	our
situation	we	have	“IF(#	Blue	lost	<	0,	 ,	IF(#	Blue	lost	>	Blue,	0,	use	model)).”	In
Figure	3.34	we	show	the	new	formula	for	Blue	for	our	Hughes	model.

FIGURE	3.34	Hughes	model	formula	for	Blue	with	nested	IF	statements.

We	try	out	the	new	model	with	a	computational	example.



Example	3.20:

Consider	two	fleets	whose	attributes	are	given	in	Table	3.2.	Project	the	course	of	a	battle
between	the	two	forces.

TABLE	3.2	Hughes	Salvo	Model	Parameters	for	Example	3.20

Blue Red
Parameter Value Parameter Value
B(0) 16 R(0) 13
b 5 r 6
c 2 s 3
d 5 u 5

We	enter	all	parameters	into	our	Hughes	Excel	model	and	drag	the	model	equations	down
until	one	side	reaches	0.	The	results	are	given	in	Figure	3.35.

FIGURE	3.35	Hughes	Excel	model	output	for	Example	3.20.

We	see	that	the	battle	lasts	for	3	salvos	and	Blue	is	the	victor	with	3.8	ships	remaining.

3.4.1	The	FER	and	Fighting	Strength
Along	with	the	more	complicated	Hughes	model	comes	a	more	complicated	expression	for	the
FER.	Recall	that	the	FER	is	a	ratio	of	the	relative	losses	sustained	by	each	side.	Initially	the
relative	loss	that	Blue	sustains	is	given	by



Similarly	the	relative	loss	that	Red	sustains	is	given	by

The	FER	is	therefore	given	by

Assuming	both	 	and	 	are	positive,	we	can	use	the
FER	as	a	predictive	tool	as	we	did	with	the	Lanchester	model:	if	 ,	Blue	will	win;	if	

,	Red	will	win;	and	if	we	have	parity	at	 ,	we	get	mutual	destruction.	For	the
Hughes	model	the	quantities	that	are	akin	to	fighting	strength	are	 	for
Blue	and	 	for	Red.	We	continue	to	use	the	term	“fighting	strength”	in	this
context	despite	the	fact	that	a	side’s	fighting	strength	now	depends	in	part	on	attributes	of	the
adversary.	We	still	have	the	result	that	whichever	side	has	the	greater	fighting	strength	at	the
outset	will	win	the	battle,	but	we	do	not	offer	a	proof	of	this	result.

3.4.2	Quality	versus	Quantity:	Assessing	Warship	Attributes
The	purpose	of	the	Hughes	model	is	not	to	predict	the	course	of	any	actual	battle.	Rather	it	is	to
help	weigh	the	relative	importance	of	(i)	force	numbers,	(ii)	offensive	firepower,	(iii)
defensive	power,	and	(iv)	staying	power.	Every	force	desires	more	ships	with	more	firepower,
more	defensive	power,	and	more	staying	power,	but	the	reality	is	that	no	navy	can	afford	to
increase	all	four	attributes	at	the	same	time.	Given	finite	resources,	the	question	is,	how	should
those	resources	be	allocated?	Should	a	navy	build	many	weaker	ships	or	fewer	stronger	ships?
Should	those	ships	be	outfitted	with	as	much	offensive	firepower	as	possible,	or	should	more
attention	be	paid	to	defensive	power?

By	examining	the	formula	for	fighting	strength,	we	see	that	the	force	number	appears	as	a
squared	term	(as	it	does	in	the	Lanchester	model).	All	other	parameters	appear	only	as	linear
terms.	This	suggests	that	the	single	most	important	determinant	of	the	course	of	a	battle	is	still
force	number.	Our	next	example	illustrates	this	point.



Example	3.21:

Consider	two	forces	whose	attributes	are	given	in	Table	3.3.	Show	that	if	Red	were	to
double	its	offensive,	defensive,	and	staying	power	all	at	once,	Blue	could	offset	all	of
those	gains	simply	by	doubling	its	number	of	forces.

TABLE	3.3	Hughes	Salvo	Model	Parameters	for	Example	3.21

Blue Red
Parameter Value Parameter Value
B(0) 10 R(0) 10
b 4 r 4
c 3 s 3
d 2 u 2

Since	the	forces	have	identical	capabilities	and	numbers,	initially	we	expect	mutual
destruction,	and	our	Excel	model	confirms	this.	Next	we	assume	that	the	Red	force
doubles	all	of	its	capabilities.	Then	 ,	 ,	and	 .	As	expected	these	changes
result	in	a	swift	and	decisive	victory	for	Red.	Our	claim	is	that	Blue	can	offset	Red’s
advantage	by	doubling	its	numbers.	Plugging	in	 	into	our	spreadsheet	confirms
this	(see	Fig.	3.36).

FIGURE	3.36	Excel	confirmation	of	result	in	Example	3.21.

In	our	next	example	we	show	how	to	prove	the	previous	result	in	general	using	the	FER.



Example	3.22:

Assume	Blue	and	Red	begin	at	parity	so	that	their	fighting	strengths	are	equal.	Show	that	if
Red	were	to	double	its	offensive	firepower,	double	its	defensive	power,	and	double	its
staying	power,	Blue	could	offset	Red’s	quality	advantage	by	doubling	its	number	of	units.

Consider	the	fighting	strengths	for	Red,	 ,	and	for	Blue,	
.	We	begin	at	parity	so	that	 	and	therefore

If	Red	doubles	all	of	its	quality	parameters,	the	fighting	strength	for	Red	becomes	
,	and	the	fighting	strength	for	Blue	becomes	
.	Now	if	Blue	doubles	only	its	force	number,	the	fighting	strength

for	Red	becomes	 ,	and	for	Blue	it	becomes	
.	Factoring	out	the	2’s	from	each,	we	get	
,	for	Red	and	 .	Thus	each	side	has

quadrupled	its	original	fighting	strength,	and	we	are	back	to	parity.

The	moral	of	the	previous	example	is	that	a	force	that	has	twice	the	quality	can	be	matched	by
a	force	half	as	good	but	twice	as	big.

In	the	examples	that	follow,	we	begin	to	get	a	sense	of	the	relative	importance	of	each	of	the
attributes	by	examining	particular	situations.	Unfortunately	the	relative	importance	of	each
attribute	is	highly	dependent	on	the	particular	force	under	consideration,	so	it	is	difficult	to
make	general	claims	about	them.

Example	3.23:

Suppose	we	know	the	force	attributes	for	Red	and	Blue	are	as	given	in	Table	3.4.
Suppose	also	that	Red	has	the	resources	to	increase	any	of	its	quality	parameters	by	two
(or	two	separate	attributes	by	one	each).	Determine	the	optimal	way	Red	should	make
improvements	to	its	fleet.



TABLE	3.4	Hughes	Salvo	Model	Parameters	for	Example	3.23

Blue Red
Parameter Value Parameter Value
B(0) 10 R(0) 10
b 12 r 8
c 7 s 7
d 3 u 7

As	we	can	verify	with	Excel,	Red	is	currently	at	a	disadvantage	and	would	quickly	lose	a
battle	against	Blue.	Determining	how	Red	should	best	allocate	its	resources	is	a	model
simulation	question.	In	other	words	this	is	a	trial-and-error	question	that	we	can	answer
using	our	Excel	model.	Red	has	six	possible	ways	of	allocating	the	improvements:	(1)
increase	r	by	2,	(2)	increase	s	by	2,	(3)	increase	u	by	2,	(4)	increase	r	and	s	by	1	each,	(5)
increase	r	and	u	by	1	each,	and	(6)	increase	s	and	u	by	1	each.	Taking	each	possibility	in
turn	and	entering	the	correct	parameter	values	into	Excel,	we	note	the	results	of	each
possibility.	We	show	the	output	in	Figure	3.37	for	the	best	outcome,	which	occurs	when	r
and	s	are	each	increased	by	one.	The	result	of	Red’s	optimal	choice	is	a	victory	over	Blue
with	3.5	ships	remaining.

FIGURE	3.37	Hughes	Excel	model	output	for	Red’s	optimal	parameter	choice	in
Example	3.23.

Decisions	about	how	to	allocate	resources	for	fleet	improvement	or	construction	will	be	highly
force	dependent.	In	other	words,	changing	the	initial	force	attributes	of	either	side	can	change
the	result	of	an	example	like	the	preceding	one.	A	navy	seeking	to	optimize	its	fleet	may	only
be	able	to	do	so	if	it	has	knowledge	of	the	capabilities	of	the	enemy’s	fleet.



3.4.3	Equilibrium	Points
We	begin	our	discussion	of	equilibrium	points	by	solving	the	system

for	(B*, R*).	The	system	reduces	to	the	two	equations

These	last	two	equations	imply	that	 ,	which	is	certainly	true	if	 ,	which	in	turn
would	imply	that	 .	This	gives	us	a	trivial	equilibrium	point	at	 .

However	if	 	we	can	cancel	it	from	both	sides	of	the	equation	 ,	and	be	left

with	 .	Then	for	any	 	if	 ,	we	have	an	equilibrium	point	whenever	

.	In	other	words	when	 ,	we	end	up	with	an	entire	line	of	nonzero
equilibrium	points.

We	should	view	this	last	scenario	as	unlikely.	The	equality	 	implies	that	one	of	the	sides
must	have	more	defensive	power	than	offensive	firepower,	which	would	be	unusual.	This
scenario	also	requires	that	the	numbers	of	ships	for	Blue	and	Red	are	in	exactly	the	right
proportion	so	that	neither	side	can	hurt	the	other.

As	in	the	Lanchester	model,	the	battle	only	proceeds	toward	the	mutual	destruction	equilibrium
	if	FER = 1,	that	is,	when	the	fighting	strengths	of	the	two	sides	are	equal.

Though	the	algebra	is	more	complicated,	FER = 1	is	again	represented	by	a	straight	line
through	the	origin	in	the	B,R-phase	plane.	This	straight	line	divides	the	phase	plane	into	two
regions:	points	above	the	line	result	in	victory	for	Red,	while	points	below	the	line	result	in
victory	for	Blue.	The	situation	is	generally	unstable	in	the	sense	that	any	slight	advantage	given
to	one	side	will	move	the	battle	off	of	the	FER = 1	line	into	one	of	the	two	regions	where
victory	for	that	side	is	assured.

In	our	Excel	implementation	of	the	Hughes	model,	recall	that	due	to	practical	considerations,
we	forced	the	model	to	“turn	off”	if	either	side’s	force	level	became	negative.	As	with	the
Lanchester	model,	this	introduces	equilibrium	points	along	both	axes	in	the	B,R-plane:	if	either
side’s	force	level	becomes	zero,	the	battle	is	over.

In	our	Excel	implementation	we	also	forced	the	model	to	avoid	increases	to	either	side’s	force
level	by	not	allowing	the	losses	for	each	side	to	turn	negative.	We	did	this	by	using	zero	for	a



side’s	losses	whenever	that	loss	turned	negative.	In	preventing	negative	losses	we	introduced
another	type	of	equilibrium	point:	we	will	get	an	equilibrium	point	whenever	the	losses	for
both	sides	are	zero.

We	examine	the	equilibrium	points	introduced	by	our	practical	considerations	more	carefully
in	the	next	section.

3.4.4	Overkill	and	Stalemates
There	are	two	kinds	of	overkill	that	are	important	to	consider	in	order	to	understand	the	global
behavior	of	the	Hughes	model.	The	first	is	offensive	overkill,	where	one	side	has	more	than
enough	offensive	firepower	to	completely	eliminate	the	enemy	in	one	salvo.	The	second	is
defensive	overkill,	where	one	side	has	more	than	enough	defensive	power	to	destroy	all
incoming	enemy	missiles	during	a	salvo.

If	both	sides	are	in	an	offensive	overkill	position,	then	we	will	get	mutual	destruction	after	the
next	salvo.	If	both	sides	are	in	a	defensive	overkill	position,	then	the	result	of	the	battle	is	a
stalemate—an	equilibrium	point	where	both	sides	have	forces	remaining	but	neither	side	is
able	to	harm	the	other.

The	limitations	we	incorporated	with	nested	“IF”	statements	in	Excel	were	exactly	the
requirements	that	describe	overkill	positions.	Considering	the	DDS	equation	for	Blue	forces,
we	will	have	defensive	overkill	for	Blue	if

and	offensive	overkill	for	Red	if

Thus	when

some,	but	not	all,	of	Blue’s	forces	will	be	eliminated.	After	some	algebra	we	arrive	at	the
equivalent	inequality

The	fate	of	the	Blue	side	depends	on	the	relative	strength	of	the	Red:	if	the	number	of	Red	units

ever	falls	below	 ,	then	Red	will	no	longer	be	able	to	harm	Blue.	On	the	other	hand,	if



the	number	of	Red	units	ever	rises	above	 ,	then	Red	will	completely	eliminate	Blue
during	that	salvo.

After	a	similar	analysis	for	the	Red	forces,	we	conclude	that	some,	though	not	all,	of	the	Red
forces	will	be	eliminated	as	long	as

The	fate	of	the	Red	side	depends	on	the	relative	strength	of	the	Blue:	If	the	number	of	Blue

units	ever	falls	below	 ,	then	Blue	will	no	longer	be	able	to	harm	Red.	On	the	other

hand,	if	the	number	of	Blue	units	ever	rises	above	 ,	then	Blue	will	completely
eliminate	Red	during	that	salvo.

It	is	useful	to	rewrite	the	last	inequality	so	that	the	Red	forces	appear	in	the	middle.	Assuming
positive	numbers	of	forces,	we	take	reciprocals,	multiply	through	by	 ,	and
arrive	at

If	a	battle	is	in	a	stalemate	situation,	what	does	this	mean	in	terms	of	the	model	parameters?	In
order	to	have	a	stalemate,	we	must	have	forces	remaining	on	both	sides	with	neither	force
being	able	to	harm	the	other.	In	terms	of	our	inequalities,	this	means	we	must	have	

	and	 .	Taken	together	these	last	two	inequalities	imply	that

,	so	 .	This	tells	us	that	in	order	for	a	stalemate	to	occur,	we	must	first
have	 .	In	other	words	the	product	of	the	offensive	firepower	of	the	two	sides	must	be
less	than	or	equal	to	the	product	of	the	defensive	powers.	Practically	speaking	this	requirement
seems	very	unlikely	to	occur	since	offensive	firepower	is	generally	greater	than	defensive

power.	We	note	that	the	case	of	equality,	 ,	produces	the	equilibrium	condition	discussed	in
Section	3.4.3.

In	the	next	example	we	illustrate	an	important	implication	of	offensive	overkill,	especially	for
forces	whose	offensive	firepower	is	high	compared	to	their	defensive	power.



Example	3.24:

Consider	two	forces	whose	attributes	are	given	in	Table	3.5.	Analyze	a	battle	between	the
two	forces.

TABLE	3.5	Hughes	Salvo	Model	Parameters	for	Example	3.24

Blue Red
Parameter Value Parameter Value
B(0) 2 R(0) 4
b 24 r 9
c 16 s 1
d 2 u 1

We	plug	all	model	parameters	into	our	Excel	model	and	see	that	we	get	mutual	destruction
after	a	single	salvo.	This	may	come	as	a	surprise	given	that	Blue	is	the	obviously	superior
force.	To	quantify	how	superior,	we	calculate	the	fighting	strengths	of	each	side.	For	Blue
it	is

For	Red	the	fighting	strength	is

Thus	Blue	has	11	times	greater	fighting	strength	than	Red,	yet	Blue	is	still	eliminated	in	the
first	salvo.

This	example,	based	on	an	example	in	Hughes	(1995),	shows	that	a	side	with	vastly	inferior
quality	can	still	completely	eliminate	a	vastly	superior	force.	Even	though	Blue’s	superior
offensive	power	could	destroy	the	Red	fleet	several	times	over,	Blue’s	lack	of	similar
defensive	power	leaves	it	vulnerable.	Blue’s	ability	to	destroy	Red	many	times	is	for	naught
since	Red	still	has	enough	firepower	to	eliminate	Blue	once.

This	example	points	out	that	even	a	vastly	superior	force	cannot	afford	to	engage	an	enemy	if
the	superior	force	has	little	staying	power.	In	such	a	case	the	superior	force	must	also	have
superior	scouting	that	will	enable	it	to	launch	an	unanswered	first	salvo.	As	Hughes	writes:

The	unstable	circumstance	of	very	strong	combat	power	on	both	sides	relative	to	their
staying	power	argues	under	all	circumstances	in	favor	of	delivering	unanswered	strikes.
First	effective	attack	is	achieved	by	out	scouting	the	enemy.

(Hughes,	1995)



3.4.5	Phase	Plane	Diagram	and	Combat	Implications
A	phase	plane	diagram	can	help	us	make	sense	of	all	of	the	inequalities	we	have	been
discussing.	Recall	from	the	previous	section	that	the	fate	of	 	is	determined	by	the

inequality	 .	We	can	visualize	each	end	of	the	inequality	as	a

line	through	the	origin	in	the	B,R-phase	plane,	the	first	with	slope	 	and	the	second	with	slope	

.	If	 	falls	inside	the	region	between	these	two	lines,	then	Blue	will	be	harmed	but
not	eliminated.

Similarly,	we	recall	that	the	fate	of	Red	is	determined	by	the	inequality	

.	Each	of	the	endpoints	represents	a	line	through	the	origin	in

the	B,R-phase	plane,	the	first	with	slope	 	and	the	second	with	slope	 .	If	 	falls	in	the
region	between	these	two	lines,	then	Red	will	be	harmed	but	not	eliminated.

The	way	in	which	these	regions	overlap	in	the	phase	plane	changes	depending	on	the	particular
choices	of	parameters.	In	the	examples	that	follow,	we	examine	some	typical	scenarios.	The

first	example	looks	at	the	case	where	 .

Example	3.25:

Let	our	parameter	choices	be	given	by	Table	3.6.	Analyze	the	global	behavior	of	the
model	using	a	phase	plane	diagram.

TABLE	3.6	Hughes	Salvo	Model	Parameters	for	Example	3.25

Blue Red
Parameter Value Parameter Value
b 10 r 9
c 3 s 5
d 4 u 4

Our	choices	of	parameters	give	us	the	following	four	slopes	for	our	lines:	 ,	

,	 ,	and	 .	These	four	lines	through	the	origin	divide	the	phase
plane	into	five	distinct	regions	(see	Fig.	3.38),	each	corresponding	to	a	different	fate	for
our	model.



FIGURE	3.38	Phase	plane	diagram	for	Hughes	model	in	Example	3.25.

Working	from	the	bottom	up,	we	consider	each	region:

Region	I	corresponds	to	points	where	Red	will	be	completely	eliminated	in	the	next
salvo	with	no	harm	caused	to	Blue.

Region	II	corresponds	to	points	where	Red	will	be	completely	eliminated	in	the	next
salvo	but	will	cause	some	harm	to	Blue.

Region	III	corresponds	to	points	where	both	Red	and	Blue	will	be	completely
eliminated	in	the	next	salvo.

Region	IV	corresponds	to	points	where	Blue	will	be	completely	eliminated	in	the	next
salvo	but	will	cause	some	harm	to	Red.



Region	V	corresponds	to	points	where	Blue	will	be	completely	eliminated	in	the	next
salvo	and	Red	will	not	be	harmed.

Our	next	example	examines	the	case	where	 .

Example	3.26:

Let	our	parameter	choices	be	given	by	Table	3.7.	Analyze	the	global	behavior	of	the
model	using	a	phase	plane	diagram.

TABLE	3.7	Hughes	Salvo	Model	Parameters	for	Example	3.26

Blue Red
Parameter Value Parameter Value
b 7 r 7
c 3 s 5
d 4 u 4

Our	choices	of	parameters	give	us	the	following	four	slopes	for	our	lines:	 ,	

,	 ,	and	 .	These	four	lines	through	the	origin	divide	the	phase
plane	into	five	distinct	regions	(see	Fig.	3.39),	each	corresponding	to	a	different	fate	for
our	model.



FIGURE	3.39	Phase	plane	diagram	for	Hughes	model	in	Example	3.26.

Working	from	the	bottom	up,	we	consider	each	region:

Region	I	corresponds	to	points	where	Red	will	be	completely	eliminated	in	the	next
salvo	with	no	harm	caused	to	Blue.

Region	II	corresponds	to	points	where	Red	will	be	completely	eliminated	in	the	next
salvo	but	will	cause	some	harm	to	Blue.

Region	III	corresponds	to	points	where	both	Red	and	Blue	will	be	harmed	but	not
completely	eliminated	in	the	next	salvo.

Region	IV	corresponds	to	points	where	Blue	will	be	completely	eliminated	in	the	next
salvo	but	will	cause	some	harm	to	Red.

Region	V	corresponds	to	points	where	Blue	will	be	completely	eliminated	in	the	next



salvo	and	Red	will	not	be	harmed.

Region	III	in	this	example	is	interesting	because	it	is	the	only	region	where	the	winner	is
not	determined.	In	this	region	we	would	have	to	subdivide	it	further	using	the	
line.	(The	slope	of	the	 	line	in	this	case	is	about	0.87,	so	it	is	contained	in	Region
III.	See	Appendix	C	for	a	derivation	of	the	line.)	Any	points	in	Region	III	above	the	

	line	will	result	in	a	victory	for	Red,	while	any	points	below	the	 	line
result	in	a	victory	for	Blue.

In	the	exercises	the	reader	is	invited	to	make	a	similar	analysis	for	different	parameter	choices.

3.4.6	Section	Exercises

1.	 Consider	two	fleets	whose	attributes	are	given	in	Table	3.8.	Project	the	course	of	a	battle
between	the	two	forces.

a.	 Determine	by	hand	the	numbers	of	Blue	and	Red	forces	remaining	after	one	time	step.

b.	 Determine	the	eventual	victor	and	how	many	ships	remain	at	the	end	of	the	battle.

TABLE	3.8	Hughes	Salvo	Model	Parameters	for	Exercise	1

Blue Red
Parameter Value Parameter Value
B(0) 17 R(0) 14
b 4 r 6
c 2 s 3
d 5 u 4

2.	 Consider	two	fleets	whose	attributes	are	given	in	Table	3.9.	Project	the	course	of	a	battle
between	the	two	forces.

a.	 Determine	by	hand	the	numbers	of	Blue	and	Red	forces	remaining	after	one	time	step.

b.	 Determine	the	eventual	victor	and	how	many	ships	remain	at	the	end	of	the	battle.



TABLE	3.9	Hughes	Salvo	Model	Parameters	for	Exercise	2

Blue Red
Parameter Value Parameter Value
B(0) 20 R(0) 15
b 3 r 5
c 2 s 1
d 4 u 6

3.	 For	the	parameters	given	in	Table	3.8,	use	the	FER	to	determine	the	eventual	winner.

4.	 For	the	parameters	given	in	Table	3.9,	use	the	FER	to	determine	the	eventual	winner.

5.	 For	the	parameters	given	in	Table	3.8,	use	the	fighting	strength	to	determine	the	eventual
winner.

6.	 For	the	parameters	given	in	Table	3.9,	use	the	fighting	strength	to	determine	the	eventual
winner.

7.	 Suppose	we	know	the	force	attributes	for	Red	and	Blue	are	as	given	in	Table	3.10.
Suppose	also	that	Red	has	the	resources	to	increase	any	of	its	quality	parameters	by	1.
Determine	the	optimal	way	Red	should	make	improvements	to	its	fleet	in	order	to	face
Blue.

TABLE	3.10	Hughes	Salvo	Model	Parameters	for	Exercise	7

Blue Red
Parameter Value Parameter Value
B(0) 20 R(0) 15
b 4 r 5
c 2 s 2
d 4 u 6

8.	 Suppose	we	know	the	force	attributes	for	Red	and	Blue	are	as	given	in	Table	3.11.
Suppose	also	that	Red	has	the	resources	to	increase	any	of	its	quality	parameters	by	a	total
of	3.	Thus	Red	can	increase	each	parameter	by	one,	one	parameter	by	3,	etc.	Determine	the
optimal	way	Red	should	make	improvements	to	its	fleet	in	order	to	face	Blue.



TABLE	3.11	Hughes	Salvo	Model	Parameters	for	Exercise	8

Blue Red
Parameter Value Parameter Value
B(0) 20 R(0) 15
b 4 r 5
c 3 s 2
d 4 u 6

9.	 Let	our	parameter	choices	be	given	by	Table	3.12.	Analyze	the	global	behavior	of	the
model	using	a	phase	plane	diagram.

TABLE	3.12	Hughes	Salvo	Model	Parameters	for	Exercise	11

Blue Red
Parameter Value Parameter Value
b 10 r 10
c 3 s 5
d 3 u 5

10.	 Let	our	parameter	choices	be	given	by	Table	3.13.	Analyze	the	global	behavior	of	the
model	using	a	phase	plane	diagram.

TABLE	3.13	Hughes	Salvo	Model	Parameters	for	Exercise	12

Blue Red
Parameter Value Parameter Value
b 7 r 6
c 3 s 5
d 5 u 5

3.5	ARMSTRONG	SALVO	MODEL	WITH	AREA	FIRE
The	Hughes	salvo	model	is	applicable	in	naval	combat	situations	where	both	sides	know	the
location	of	the	other	so	that	all	missiles	can	be	assumed	to	be	well	aimed.	For	that	reason	the
Hughes	model	is	referred	to	as	an	aimed	fire	model.	However,	there	are	situations	where
enemy	locations	are	only	approximately	known,	and	in	such	cases	offensive	fire	can	only	target
the	general	area	where	the	enemy	is	thought	to	be.	Situations	in	which	area	fire	can	arise
include	sea	combat	where	enemy	ships	have	deployed	countermeasures	to	obscure	their
location	and	littoral	combat	where	a	sea	force	engages	a	land	force	whose	location	cannot	be
precisely	determined.	In	2013	Armstrong	developed	an	extension	of	Hughes	model	to	account



for	this	situation	(Armstrong,	2013).	His	model	builds	on	the	work	of	Mahon	(2007)	and	is
known	as	the	salvo	model	with	area	fire.

The	idea	behind	Armstrong’s	model	is	to	adjust	the	Hughes	model	to	account	for	the	fact	that
offensive	missiles	are	no	longer	well	aimed.	Instead,	there	is	an	element	of	chance	to	firing	so
that	each	missile	has	only	a	certain	probability	of	being	on	target.

The	new	parameter	that	makes	this	adjustment	is	the	target	area	ratio.	The	target	area	ratio	is
the	ratio	of	the	offensive	missiles’	area	of	lethality	to	the	total	area	in	which	the	enemy	is
known	to	be	located.	The	higher	the	target	area	ratio,	the	better	it	is	for	the	attacker.	The
attacker	can	increase	its	target	area	ratio	in	two	ways:	by	increasing	the	destructive	capability
of	its	missiles	or	by	increasing	the	precision	with	which	it	knows	the	enemy’s	location	and
thereby	decreasing	the	area	where	the	enemy	is	known	to	be.	In	this	way	the	target	area	ratio	is
a	measure	of	both	the	missile	capability	and	the	scouting	effectiveness	of	the	attacker.

We	let	e	denote	the	target	area	ratio	when	Blue	is	attacking	and	v	the	target	area	ratio	when
Red	is	attacking.	We	illustrate	the	meaning	of	the	target	area	ratio	with	an	example.

Example	3.27:

Suppose	Blue	knows	through	scouting	that	all	Red	units	are	located	somewhere	within	an
area	of	4 mile2.	Each	missile	that	Blue	fires	has	an	area	of	lethality	of	0.01 mile2.	Find	the
target	area	ratio	for	Blue.

Here	we	need	to	plug	in	the	given	values	to	get	the	target	area	ratio	for	Blue	as	

.	We	can	think	of	e	as	the	proportion	of	enemy	territory	that	is	affected	by
a	single	missile.

Suppose	now	that	there	are	R	Red	forces	within	the	area	where	Red	is	known	to	be.	Then	on
average,	each	missile	fired	by	Blue	will	hit	eR	Red	units.	This	idea	is	illustrated	in	the
example	below.



Example	3.28:

Suppose	Blue’s	missiles	have	a	lethality	area	of	0.02 mile2	and	the	Red	forces	are	known
to	be	somewhere	in	an	area	of	2 mile2.	If	there	are	100	Red	forces,	find	the	average
number	of	Red	units	affected	by	each	Blue	missile.

The	target	area	ratio	for	Blue	is	given	by	 .	This	means	that	each	missile
fired	by	Blue	will	affect	1%	of	the	area	where	the	Red	forces	are	located.	Then	on
average	each	of	those	missiles	will	affect	1%	of	the	Red	forces.	In	other	words	on
average	each	missile	will	affect	 	Red	units.

We	make	the	general	observation	that	with	R	Red	forces	and	a	target	area	ratio	of	e	for	Blue,
the	number	of	Red	units	affected	on	average	by	each	Blue	missile	is	given	by	eR.	Similarly,	if
Red	is	attacking,	then	the	exact	same	reasoning	applies	to	give	us	the	average	number	of	Blue
units	affected	by	each	Red	missile,	namely,	vB.

Taking	the	target	area	ratios	into	account,	we	are	now	ready	to	build	the	area	fire	salvo	model.
We	use	the	same	parameter	variables	as	for	the	Hughes	model	but	add	to	them	our	target	area
ratios.	These	are	summarized	in	Table	3.14.

TABLE	3.14	Force	Attributes	for	the	Area	Fire	Salvo	Model

Attribute Blue Red
Offensive	firepower b r
Defensive	power c s
Staying	power d u
Target	area	ratio e v

We	consider	first	how	the	number	of	Blue	units	will	change	with	each	salvo.	The	number	of
Red	missiles	launched	with	each	salvo	is	 .	Because	Red	only	knows	the	approximate
location	of	the	Blue	units,	each	of	those	missiles	would	on	average	only	result	in	 	hits
on	Blue.	Thus	with	each	salvo	the	total	number	of	hits	on	Blue	that	would	be	caused	by	Red
missiles	is	given	by	 .

Next	we	must	remember	that	Blue	will	be	able	to	shoot	down	some	of	these	missiles,	namely,	
	of	them.	That	leaves	 	missiles	that	will	actually	strike

Blue	units.	Since	it	takes	d	Red	missile	hits	to	destroy	a	Blue	unit,	we	know	that	with	each
salvo	there	will	be



Blue	units	destroyed.	Finally	we	arrive	at	the	equation	for	how	the	number	of	Blue	units
changes	with	each	salvo:

Using	the	same	reasoning	for	the	number	of	Red	units,	we	arrive	at	the	final	DDS	for	the
Armstrong	area	fire	salvo	model:

Implementing	the	model	in	Excel	is	very	similar	to	the	Hughes	model.	The	setup	for	the	area
fire	Excel	model	is	shown	in	Figure	3.40.

FIGURE	3.40	Area	fire	salvo	Excel	model	setup.

The	area	fire	model	equations	are	similar	to	the	Hughes	equations.	They	are	given	in	Figure
3.41.

FIGURE	3.41	Area	fire	salvo	Excel	model	with	formulas	displayed.

As	with	the	Hughes	model,	we	have	to	modify	the	model	equations	in	order	to	ensure	that	our



output	is	physically	meaningful.	Just	like	for	the	Hughes	model,	we	note	that	the	number	of
Blue	units	lost	during	a	salvo	cannot	exceed	the	number	of	existing	Blue	units	(otherwise	we
get	a	negative	force	level),	nor	can	it	be	negative	(otherwise	the	force	level	would	increase).
Thus	we	have	the	restriction	on	the	model	that

Similarly	from	the	Red	equation,	we	must	have

We	take	these	restrictions	into	account	in	Excel	using	nested	“IF”	statements	that	report	force
levels	of	0	whenever	the	losses	in	a	salvo	exceed	the	number	of	forces	and	report	the	previous
force	level	whenever	the	losses	in	a	salvo	are	negative.	The	structure	of	the	IF	statements	is
identical	to	that	used	in	the	Hughes	Excel	model.

As	a	check	on	our	Excel	work,	we	consider	the	following	computational	example.

Example	3.29:

Model	the	course	of	a	battle	between	Blue	and	Red	under	the	conditions	presented	in
Table	3.15.

After	plugging	the	required	parameters	into	our	Excel	model,	we	get	the	model	projection
in	Figure	3.42.

TABLE	3.15	Area	Fire	Model	Parameters	for	Example	3.29

Blue Red
Parameter Value Parameter Value
B(0) 100 R(0) 125
b 10 r 7
c 6 s 6
d 5 u 4
e 0.009 v 0.007

Under	the	given	conditions	we	see	that	Red	is	eliminated	after	7	salvos,	with	Blue
retaining	97.5	of	its	original	force	of	100	or	97.5%.	Note	that	once	force	levels	for	Red
reach	zero,	they	stay	there	rather	than	turning	negative.



FIGURE	3.42	Area	fire	salvo	Excel	model	projections	for	Example	3.29.

3.5.1	The	FER	and	Fighting	Strength
Recall	that	the	FER	is	a	ratio	of	the	relative	losses	sustained	by	each	side.	For	the	area	salvo
model,	the	relative	loss	sustained	initially	by	Blue	is	given	by

Similarly	the	relative	loss	sustained	initially	by	Red	is	given	by

Thus	the	FER	is	given	by

Unfortunately	the	added	complication	involved	in	the	area	salvo	model,	specifically	its
nonlinearity,	prevents	us	from	making	blanket	statements	about	the	outcome	of	the	battle	based



on	the	FER.	Instead	we	will	regard	it	as	an	approximate	guide:	typically	we	will	have	a	Red
victory	if	 	and	a	Blue	victory	if	 .	Except	under	special	circumstances
(discussed	in	Section	3.5.5),	the	case	where	 ,	while	it	does	indicate	temporary	parity,
will	not	guarantee	mutual	destruction.

We	define	fighting	strengths	as	 	for	Red	and	 	for	Blue	and	make	a
similar	qualification	that	whichever	side	has	the	greater	initial	fighting	strength	will	typically
win	the	battle.	We	note	that	as	a	practical	matter,	fighting	strength	cannot	be	negative.	If	this
occurs	we	interpret	the	fighting	strength	as	0.

Note	that	in	the	formula	for	fighting	strength,	all	parameters	including	force	level	are	raised
only	to	the	first	power.	In	other	words	fighting	strength	depends	linearly	on	all	parameters
including	force	level.	This	is	different	than	the	situation	in	the	Lanchester	and	Hughes	models
where	force	levels	appear	as	squared	terms	with	the	implication	that	force	levels	were
relatively	much	more	important	than	the	other	attributes.	As	we	will	see	in	the	next	section,	this
difference	has	profound	strategic	implications.

3.5.2	Stealth	versus	Open	Combat
The	observation	in	the	previous	section	that	force	level	is	less	important	in	the	area	fire	model
than	in	the	Hughes	aimed	fire	model	brings	us	to	an	interesting	question	of	strategy:	should	a
force	engage	an	enemy	in	open	combat	or	should	it	instead	try	to	keep	its	location	hidden	even
at	the	expense	of	not	knowing	the	enemy’s	exact	location?	Put	another	way	we	are	asking
whether	or	not	a	particular	force	should	prefer	to	fight	with	aimed	fire	as	in	the	Hughes	model
or	with	area	fire	as	in	the	Armstrong	model.

We	explicate	the	issue	with	an	example.

Example	3.30:

Suppose	we	have	two	forces	with	attributes	given	in	Table	3.16.	Use	the	Hughes	salvo
model	and	the	area	fire	salvo	model	to	determine	which	type	of	battle	Blue	should	prefer.

TABLE	3.16	Salvo	Model	Parameters	for	Example	3.30

Blue Red
Parameter Value Parameter Value
B(0) 200 R(0) 600
b 8 r 4
c 4 s 2
d 6 u 3
e 0.002 v 0.001

Note	that	the	Blue	forces	have	twice	the	quality	of	the	Red	forces	in	every	attribute	but



that	the	Red	force	is	three	times	as	large.	Plugging	all	values	(except	the	target	area	ratio)
into	the	Hughes	model	gives	a	swift	and	decisive	victory	for	Red.	We	give	the	results	in
Figure	3.43.

FIGURE	3.43	Hughes	model	results	for	Example	3.30.

In	fact	Red	completely	eliminates	Blue	with	the	first	salvo	while	only	sustaining	about
133	casualties.	In	the	aimed	fire	situation,	Red’s	numbers	advantage	is	more	than	enough
to	overcome	its	deficiencies	in	all	other	areas.

Next	we	examine	the	same	forces	engaging	in	an	area	fire	situation	where	neither	knows
the	other’s	location	well	enough	to	aim	missiles	at	particular	targets.	As	indicated	in
Figure	3.44,	in	this	case	the	battle	proceeds	very	differently.



FIGURE	3.44	Area	fire	model	results	for	Example	3.30.

Here	Blue	is	in	fact	unharmed	in	the	battle	while	Red	is	completely	eliminated	in	a	few
salvos.	In	an	area	fire	situation,	Blue’s	advantage	in	quality	easily	overcomes	Red’s
advantage	in	quantity.

What	this	example	shows	is	that	high-quality	forces—forces	with	effective	weapons,	good
scouting	technology,	and	highly	trained	operators—should	prefer	to	engage	the	enemy	in	an
area	fire	situation	in	order	to	take	full	advantage	of	its	superior	qualities.	Such	a	force	should
not	risk	being	detected	in	order	to	pinpoint	an	enemy’s	location.	For	forces	that	have	superior
numbers	but	inferior	quality,	the	situation	is	reversed.	These	forces	will	prefer	an	aimed	fire
situation	so	that	they	can	take	full	advantage	of	their	superior	numbers.	Such	forces	will	do
whatever	they	can	to	pinpoint	an	enemy’s	location	even	if	it	means	revealing	themselves	to	the
enemy	in	the	process	(Armstrong,	2013).

Next	we	turn	our	attention	to	the	equilibrium	points	for	the	area	fire	salvo	model.

3.5.3	Equilibrium	Points
To	find	equilibrium	points	for	the	Armstrong	model,	we	begin	by	searching	for	force	levels
(B*, R*)	such	that



Equivalently	we	need	to	solve	for	(B*, R*):

Clearing	denominators	and	factoring	out	common	terms	yield	the	system

which	has	two	solutions:	 	and	 .	The	first	is	the	trivial	point
where	there	are	no	remaining	forces	on	either	side,	and	the	second	represents	a	stalemate
where	neither	side	can	harm	the	other.	Except	under	special	circumstances	(see	Section	3.5.5),
the	course	of	a	battle	will	not	tend	toward	either	equilibrium.

As	in	the	Hughes	model,	our	introduction	of	IF	statements	in	Excel	to	prevent	physically
meaningless	results	introduces	some	equilibrium	points	into	the	model.	In	particular,	we	will
have	equilibrium	points	along	both	axes	in	the	B,R-plane	representing	complete	elimination	of
one	side.	Once	one	side	is	eliminated,	the	battle	stops.	We	also	introduce	equilibrium	points	in
the	form	of	stalemates	where	neither	side	can	harm	the	other.	In	fact	as	we	will	see	in	the
following,	the	area	fire	salvo	model	includes	an	entire	region	of	stalemate	equilibrium	points
in	the	B,R-plane.

3.5.4	Overkill	and	Stalemates
Just	as	with	the	Hughes	model,	the	area	salvo	model	can	exhibit	offensive	or	defensive
overkill	for	one	or	both	sides.	A	consideration	of	these	will	help	us	more	fully	understand	the
behavior	of	the	model.

If	both	sides	are	in	an	offensive	overkill	position,	then	we	get	mutual	destruction,	and	if	both
sides	are	in	a	defensive	overkill	position,	then	the	result	is	a	stalemate.	Considering	the	DDS
equation	for	Blue	forces,	we	will	have	defensive	overkill	for	Blue	if

and	offensive	overkill	for	Red	if

When



some,	but	not	all,	of	Blue’s	forces	will	be	eliminated.	After	some	algebra,	and	assuming	
,	we	arrive	at	the	equivalent	inequality

In	contrast	to	the	Hughes	model	where	the	fate	of	the	Blue	side	depends	on	the	relative	size	of
the	Red	force,	here	it	depends	on	the	absolute	size	of	the	Red	force.	If	the	number	of	Red	units

ever	falls	below	 ,	then	Red	will	no	longer	be	able	to	harm	Blue,	but	on	the	other	hand	if	the

number	of	Red	units	is	ever	above	 ,	then	Red	will	completely	eliminate	Blue	with	the	next
salvo.

After	a	similar	analysis	for	the	Red	forces,	we	conclude	that	some,	though	not	all,	of	the	Red
forces	will	be	eliminated	as	long	as

The	fate	of	the	Red	side	depends	on	the	absolute	size	of	the	Blue	forces.	If	the	number	of	Blue

units	ever	falls	below	 ,	then	Blue	will	no	longer	be	able	to	harm	Red,	but	on	the	other	hand	if

the	number	of	Blue	units	is	ever	above	 ,	then	Blue	will	completely	eliminate	Red	with	the
next	salvo.

In	the	next	example	we	analyze	the	implications	of	a	stalemate.

Example	3.31:

Suppose	a	battle	is	in	a	stalemate	situation.	What	does	this	mean	in	terms	of	the	model
parameters?

In	order	to	have	a	stalemate,	we	must	have	forces	remaining	on	both	sides	with	neither
force	being	able	to	harm	the	other.	In	terms	of	our	inequalities,	this	means	we	must	have	

	and	 .	Taking	the	largest	values	for	both	Red	and	Blue	would	give

us	the	point	 ,	our	nontrivial	equilibrium	from	Section	3.5.4	and	the
“maximal	stalemate”	point.



Next	we	revisit	Example	3.24	where	we	showed	that	under	aimed	fire	(Hughes)	conditions,	a
vastly	superior	force	can	be	eliminated	by	an	inferior	force	with	slightly	higher	force	levels.



Example	3.32:

Consider	two	forces	whose	attributes	are	given	in	Table	3.17.	These	are	the	same
attributes	as	in	Table	3.5	except	we	have	the	additional	parameter	for	the	target	area	ratio.
Analyze	an	area	fire	battle	between	the	two	forces.

TABLE	3.17	Area	Fire	Model	Parameters	for	Example	3.32

Blue Red
Parameter Value Parameter Value
B(0) 2 R(0) 4
b 24 r 9
c 16 s 1
d 2 u 1
e 0.1 v 0.05

We	get	a	very	different	result	than	we	did	in	the	aimed	fire	case.	We	see	in	Figure	3.45
that	Blue	will	eliminate	Red	in	the	first	salvo	with	no	harm	coming	to	Blue.

FIGURE	3.45	Area	fire	model	results	for	Example	3.32.

With	area	fire	Blue	can	now	take	advantage	of	its	superior	quality	by	not	engaging	Red	in
a	full	force,	close-range	battle.	In	this	case	with	Red’s	inferior	offensive	firepower	being
dispersed	over	a	large	area,	Blue	has	adequate	defenses	to	eliminate	all	on-target	Red
missiles.



3.5.5	Phase	Plane	Diagram	and	Combat	Implications
We	know	from	our	discussion	of	overkill	in	Section	3.5.4	that	the	absolute	sizes	of	the	Red	and
Blue	forces	(as	opposed	to	the	relative	sizes)	determine	the	fate	of	the	battle	in	an	area	fire

situation.	Specifically	we	have	already	shown	that	if	 ,	then	no	harm	will	come	to

Red	in	the	next	salvo.	Also	if	 ,	then	Red	will	be	completely	eliminated	in	the	next

salvo.	It	is	only	when	 	that	Red	will	be	harmed	but	not	eliminated.

Similarly	we	have	shown	that	if	 ,	then	no	harm	will	come	to	Blue;	if	 ,

then	Blue	will	be	completely	eliminated;	and	if	 ,	then	Blue	will	be	harmed
but	not	eliminated.

We	summarize	these	findings	in	the	phase	plane	diagram	in	Figure	3.46.



FIGURE	3.46	Phase	plane	diagram	for	area	fire	salvo	model.
Source:	Adapted	from	Armstrong	(2013),	figure	1,	p.	654.	Reproduced	with	permission	from	John	Wiley	&	Sons,	Inc.

Note	that	we	have	a	total	of	nine	regions	for	the	different	combinations	of	the	three
possibilities	each	for	Red	and	Blue:	unharmed,	harmed	but	not	eliminated,	and	eliminated.
Inside	the	region	where	Red	and	Blue	are	both	harmed	but	not	eliminated,	it	is	not	clear	who
will	win.	We	get	an	approximate	dividing	line	for	who	will	win	by	including	the	 	line
(pictured	as	a	dashed	line	in	Fig.	3.46),	which	we	find	below.

Recall	that	the	line	in	the	B,R-phase	plane	representing	 	is	the	line	where	

.	We	need	to	solve	for	R(0)	in	terms	of	B(0).	Clearing	the	denominator	on	the



left	gives	 .	Next	we	collect	all	constants	on	the	right-hand	side	to
get	 .	Finally	we	divide	by	the	coefficient	on	R(0)	to	get	the
equation	for	our	line:

As	the	reader	can	check	by	plugging	in	points,	this	line	is	the	diagonal	line	in	the	phase	plane

that	connects	the	point	 	to	the	point	 .

It	is	tempting	based	on	our	previous	models	to	claim	that	this	line	will	mark	the	boundary
between	points	where	Blue	will	win	and	points	where	Red	will	win.	Unfortunately	the	area
fire	model	is	more	complicated	than	that,	and	we	can	only	regard	this	line	as	an	approximate
boundary.

Though	in	general	the	 	line	will	not	give	a	clear	boundary	for	the	winner	in	an	area	fire
situation,	there	is	an	exception.	If	the	 	line	actually	passes	through	the	origin,	then	we
get	a	couple	of	unusual	results.	The	first	is	that	the	line	will	be	a	firm	dividing	line	with	victory
for	Red	above	it	and	victory	for	Blue	below.	The	second	is	that	any	point	that	starts	on	the	line
will	result	in	no	victory	for	either	side.	Depending	on	the	size	of	the	forces,	battles	starting	on
the	 	line	may	end	up	in	mutual	destruction,	a	stalemate	(i.e.,	in	Region	I),	or	they	may

progress	ever	closer	to	the	nontrivial	equilibrium	point	 .

3.5.6	Section	Exercises

1.	 Suppose	Blue	knows	through	scouting	that	all	Red	units	are	located	somewhere	within	an
area	of	10 mile2.	Each	missile	that	Blue	fires	has	an	area	of	lethality	of	0.02 mile2.	Find	the
target	area	ratio	for	Blue.

2.	 Model	the	course	of	a	battle	between	Blue	and	Red	under	the	conditions	presented	in	Table
3.18.

TABLE	3.18	Area	Fire	Model	Parameters	for	Exercise	2

Blue Red
Parameter Value Parameter Value
B(0) 150 R(0) 140
b 7 r 6
c 5 s 7
d 4 u 4
e 0.009 v 0.007

3.	 Suppose	we	have	two	forces	with	attributes	given	in	Table	3.19.	Use	the	Hughes	salvo



model	and	the	area	fire	salvo	model	to	determine	which	type	of	battle	Blue	should	prefer.

TABLE	3.19	Area	Fire	Model	Parameters	for	Exercise	3

Blue Red
Parameter Value Parameter Value
B(0) 220 R(0) 650
b 7 r 4
c 5 s 2
d 7 u 3
e 0.003 v 0.003

4.	 For	the	parameters	given	in	Table	3.18,	sketch	the	phase	plane	diagram	that	summarizes	all
possible	results.	Test	each	region	with	an	Excel	example.

5.	 For	the	parameters	given	in	Table	3.19,	sketch	the	phase	plane	diagram	that	summarizes	all
possible	results.	Test	each	region	with	an	Excel	example.

6.	 Extension:	Create	a	salvo	model	where	one	side	is	attacking	with	aimed	fire	and	the	other
is	attacking	with	area	fire.	An	example	where	this	situation	can	arise	is	with	littoral	combat
where	a	naval	fleet	engages	an	enemy	on	land.	In	such	a	case	which	side	is	more	likely	to
engage	in	area	fire	and	which	side	in	aimed	fire?	Justify	your	choice.

7.	 Extension:	Modify	the	basic	Lanchester	model	so	that	it	represents	an	area	fire	situation.
Carry	out	a	full	analysis	of	the	model	including	numerical	experiments,	equilibrium
analysis,	and	a	phase	plane	analysis.



4	
THE	SPREAD	OF	INFECTIOUS	DISEASES
Though	modern	methods	of	epidemic	control	have	enjoyed	some	remarkable	successes,
particularly	in	developed	parts	of	the	world,	infectious	diseases	are	still	a	significant	cause	of
much	suffering	around	the	globe.	The	mortality	and	morbidity	caused	by	infectious	diseases	are
certainly	more	acutely	felt	in	developing	countries,	but	epidemics	such	as	the	1918	flu
pandemic	that	caused	an	estimated	50	million	deaths	worldwide,	including	nearly	700,000
deaths	in	the	United	States,	serve	as	reminders	that	infectious	diseases	are	a	truly	global
concern	(Taubenberger	&	Morens,	2006).

The	first	known	attempt	to	use	a	mathematical	model	to	understand	the	dynamics	of	an
infectious	disease	was	carried	out	sometime	around	1760	by	the	mathematician	and	physician
Daniel	Bernoulli,	who	was	concerned	with	assessing	the	risks	and	advantages	associated	with
variolation	against	smallpox	(Bailey	N.	T.,	1975).	In	London	in	1855	Dr.	John	Snow,	who	is
considered	one	of	the	founding	fathers	of	modern	epidemiology,	determined	through	careful
study	of	patterns	of	cholera	cases	that	the	cause	of	a	cholera	epidemic	was	a	contaminated
water	supply	found	at	the	Broad	Street	pump	(Bailey	N.	T.,	1975).	After	gathering	statistics	on
the	number	and	location	of	cases,	Snow	convinced	the	authorities	to	remove	the	pump	handle
in	order	to	prevent	new	cases	(Ramsay,	2006).

The	field	of	mathematical	epidemiology	was	slow	in	developing	until	the	groundbreaking	work
of	Pasteur	(1822–1895)	and	Koch	(1843–1910)	who	conclusively	established	a	physical	basis
for	the	cause	of	infectious	diseases	(Bailey	N.	T.,	1975).	Until	their	work—and	the	work	of
others	such	as	Snow	and	William	Boyd—infectious	diseases	such	as	cholera	were	believed	to
be	caused	by	all	manner	of	strange	agents.	Once	some	diseases	were	conclusively
demonstrated	to	pass	from	person	to	person	through	direct	contact,	mathematics	could	be
employed	to	model	the	process.	Progress	in	developing	the	first	mathematical	models	for	this
contact	was	made	by	Hamer,	Ross,	Kermack,	McKendrick,	Greenwood,	Reed,	Frost,	Soper,
and	others	in	the	early	1900s.	Our	initial	model	is	based	on	the	1927	work	of	Kermack	and
McKendrick	(1927).

The	purpose	of	mathematical	models	for	the	spread	of	infectious	diseases	is	to	help	answer
questions	of	practical	importance	to	epidemiologists	such	as:

1.	 How	fast	will	the	disease	spread?

2.	 How	many	will	be	infected?

3.	 How	many	will	remain	uninfected?

4.	 How	long	will	the	epidemic	last?

These	first	questions	will	serve	as	a	good	starting	point	for	developing	and	testing	our	models.
However,	if	we	stopped	there,	then	the	models	would	be	of	questionable	practical	value.



Certainly	it	would	be	beneficial	for	planning	purposes	to	know	that	approximately	150
children	are	expected	to	catch	measles	during	an	outbreak,	but	it	would	be	far	better	if	our
models	could	help	us	decide	what	to	do	to	minimize	the	number	of	infections.	The	kinds	of
questions	we	really	want	answers	to	are	those	like:

1.	 Should	people	be	vaccinated?

2.	 If	so,	how	many	need	to	be	vaccinated?

3.	 How	should	resources	be	allocated	between	prevention	and	treatment?

4.	 Is	there	hope	of	eradication?

Mathematics	can	be	a	powerful	tool	in	answering	these	questions	and	others.	Throughout	this
chapter,	our	focus	will	remain	on	using	mathematical	models	to	answer	practical	questions—
the	kinds	of	questions	asked	by	epidemiologists	and	health-care	practitioners.	We	concentrate
on	mathematical	successes,	but	we	will	also	discuss	the	limitations	of	the	models	and	mention
current	problems	in	which	mathematics	has	some	role	to	play.

4.1	THE	S–I–R	MODEL
In	virtually	every	text	that	introduces	mathematical	models	for	the	spread	of	infectious
diseases,	the	first	model	that	is	presented	is	the	so-called	S–I–R	model.	This	model	was
developed	by	Kermack	and	McKendrick	(and	others)	in	the	1920s,	and	it	has	had	a	profound
and	lasting	influence	on	subsequent	epidemiological	models.

The	basis	of	the	model	is	the	partitioning	of	a	population	into	three	distinct	classes:	those	who
are	susceptible,	those	who	are	infective,	and	those	who	have	been	removed.	Any	person	who
can	become	infected	is	considered	susceptible.	An	infective	is	a	person	who	has	the	disease
and	can	transmit	it	to	others.	Anyone	who	can	no	longer	contract	the	disease,	either	because	of
immunity	after	having	the	disease	and	recovering	or	because	of	death,	is	considered	to	be
removed.

Our	model	notation	follows	naturally	from	this	description.	In	any	population	of	N	individuals,
we	let	S	denote	the	number	who	are	susceptible,	we	let	I	denote	the	number	who	are	infective,
and	we	let	R	denote	the	number	who	have	been	removed.	Since	every	person	in	a	population
must	fall	into	one	of	these	three	categories,	we	have	the	following	fundamental	equality:

Like	all	of	the	situations	we	study,	in	order	to	make	progress	on	our	model,	we	must	first	make
simplifying	assumptions,	and	we	do	our	best	to	make	those	assumptions	explicit	so	that	others
may	criticize	or	modify	them	as	they	see	fit.	Initially	we	assume	that	our	population	remains
constant	and	closed	during	the	course	of	an	epidemic.	In	other	words,	we	assume	there	are	no
births,	no	deaths,	and	no	migration.	When	epidemics	are	relatively	short	in	duration—as	is	the
case	with	colds	and	influenza—this	is	not	an	unreasonable	assumption.	On	the	other	hand,	for
diseases	like	tuberculosis,	we	will	have	to	do	away	with	this	assumption	to	have	any	hope	of
constructing	a	realistic	model.	A	further	assumption	of	the	model	is	that	our	population	mixes



homogeneously.	For	our	purposes	this	means	that	people	in	all	three	categories	are	evenly
spread	throughout	the	population.	Finally,	we	assume	that	once	a	person	has	the	disease	and
recovers,	permanent	immunity	is	conferred;	hence,	once	someone	moves	from	the	infective
state	to	the	removed	state,	he	or	she	will	remain	there	for	the	duration	of	the	epidemic.

Since	we	will	initially	be	modeling	relatively	short-lived	epidemics,	we	choose	our	time	units
to	be	in	days.	Letting	time	 	denote	the	beginning	of	an	epidemic,	we	follow	our	usual
notation	and	write

S(t) = the	number	of	susceptible	people	after	t	days

I(t) = the	number	of	infective	people	after	t	days

R(t) = the	number	of	removed	people	after	t	days

Since	we	assume	that	the	population	remains	constant	during	the	course	of	the	epidemic,	we
know	that	 	for	every	t.

The	structure	of	the	flow	diagram	for	our	model	is	relatively	straightforward	since	an
individual	can	only	move	from	S	to	I	and	from	I	to	R.	It	is	shown	in	Figure	4.1.

FIGURE	4.1	Flow	diagram	structure	for	S–I–R	model.

Before	developing	formulas	for	S,	I,	and	R,	we	pause	to	consider	how	we	expect	them	to
behave.	Since	susceptibles	can	only	leave	the	category,	we	should	expect	the	graph	for	S	to
only	decrease	over	time.	Similarly	we	should	expect	the	graph	for	R	to	only	increase	because
people	can	only	flow	into	that	compartment.	Our	experience	with	epidemics	is	that	a	few
people	start	off	sick	and	then	more	and	more	people	get	the	disease.	The	number	who	are
infective	cannot	increase	indefinitely	though—we	have	a	finite	number	of	people	and
eventually	they	move	into	the	R	category.	With	that	in	mind,	we	expect	the	graph	for	I	to
increase	for	a	while,	hit	a	peak,	and	then	decrease	afterward.

To	actually	begin	building	a	model	based	on	the	flow	diagram,	we	need	to	label	the	arrows,
that	is,	we	need	determine	how	many	people	move	from	one	compartment	to	another	each	day.
This	will	involve	the	incorporation	of	two	fundamental	parameters	based	on	two	properties
that	have	a	significant	impact	on	the	severity	of	an	epidemic:

1.	 How	easily	the	disease	is	transmitted	from	an	infective	to	a	susceptible

2.	 How	long	an	infective	person	remains	infective

We	quantify	property	1	by	introducing	a	parameter	called	the	effective	contact	rate,	which
we	denote	by	a	Greek	lowercase	beta,	β.	We	define	β	to	be	the	average	number	of	contacts	per
day	that	an	infective	person	has	that	are	sufficiently	intimate	to	transmit	the	disease.	What



qualifies	as	a	“sufficiently	intimate”	contact	varies	from	disease	to	disease.	Perhaps	a	cough	in
a	crowded	room	is	enough	to	spread	the	disease.	Perhaps	a	handshake	followed	by	a	person
rubbing	her	eyes	is	enough.	In	any	case	we	refer	to	such	contacts	as	effective	contacts,	and	β
counts	how	many	of	them	a	typical	infective	person	has	each	day.	Thus	β	is	a	quantitative
measure	of	how	readily	the	disease	is	transmitted.

In	practice,	the	parameter	β	turns	out	to	be	extremely	difficult	to	measure	directly.	It	is	also	a
surprisingly	complicated	number.	If	we	examine	the	definition,	we	see	that	β	depends	on	more
than	just	the	etiology	of	the	disease	itself.	It	also	depends	on	societal	factors	such	as	hygiene
practices,	population	density,	and	social	customs.	For	example,	we	should	expect	the	common
cold	to	have	a	higher	β	if	an	epidemic	occurs	in	a	crowded	preschool	than	if	an	epidemic
occurs	in	a	typical	office	building.	Similarly,	a	disease	that	can	be	transmitted	through	shaking
hands	would	have	a	much	smaller	β	in	a	culture	where	shaking	hands	is	not	a	customary
greeting.

We	quantify	property	2	by	introducing	a	parameter	known	as	the	duration	of	infectivity,	and
we	denote	it	with	a	lowercase	Greek	delta,	δ.	The	duration	of	infectivity	is	defined	to	be	the
average	length	of	time	that	an	infective	person	remains	infective.	Note	that	δ	is	not	the	duration
of	the	illness	since	a	person	can	be	infectious	before	symptoms	appear	and	since	symptoms	can
persist	long	after	a	person	is	no	longer	infectious.	Unlike	β	the	parameter	δ	can	be	measured
relatively	easily	for	most	diseases	through	direct	observation.

We	are	now	ready	to	label	the	arrows	in	our	flow	diagram,	beginning	with	the	arrow	from	S	to
I.	Since	β	tells	us	how	many	sufficiently	intimate	contacts	each	infective	person	has	per	day,
we	know	that	each	day	there	will	be	a	total	of	 	such	contacts	within	the	population.	Not	all
of	these	contacts	will	result	in	a	new	infection,	however.	Remember	that	the	population	is
made	up	of	susceptibles,	infectives,	and	those	who	have	been	removed	all	mixed	together.
Only	the	sufficiently	intimate	contacts	that	occur	with	susceptibles	result	in	new	infections.
Thus	we	need	to	multiply	the	total	number	of	sufficiently	intimate	contacts,	 ,	by	the

proportion	of	these	that	are	with	susceptible	people,	 .	Assuming	no	latent	period,	the

resulting	quantity,	 ,	will	be	the	number	of	new	infectives	that	appear	each	day.	In	other

words,	each	day	there	will	be	 	individuals	who	move	from	S	to	I.	This	gives	us	the	label
for	the	first	arrow	in	our	flow	diagram.

The	number	of	people	who	move	from	infective	to	removed	each	day	depends	on	the	duration,
δ.	We	illustrate	the	connection	in	the	next	example.



Example	4.1:

Suppose	that	a	disease	has	 	and	that	there	are	20	infective	people.	Recall	that	
means	that	people	are	infective	for	an	average	of	4	days.	How	many	people	would	we
expect	to	recover	the	following	day?

In	the	absence	of	information	to	the	contrary,	we	assume	that	the	number	of	infective
people	can	be	equally	divided	into	four	categories:	those	who	became	infective	today,
those	who	became	infective	yesterday,	those	who	became	infective	2	days	ago,	and	those
who	became	infective	3	days	ago.	(If	someone	became	infective	4	days	ago	or	longer,	then
on	average	he	or	she	would	have	recovered	by	now.)	With	20	infective	people,	we	should
have	roughly	5	people	in	each	category.	On	average	those	who	became	infective	3	days
ago	will	recover	and	hence	be	removed	by	the	following	day,	so	we	estimate	that	5	(or	

)	of	our	infectives	will	be	removed	the	following	day.

Following	the	same	reasoning	as	in	the	previous	example	but	without	particular	numbers,	each

day	we	expect	roughly	 	of	our	infectives	to	be	removed.	Thus,	each	day	we	will	have	
individuals	moving	from	the	infective	compartment	to	the	removed	compartment.	We	now
complete	our	flow	diagram	as	shown	in	Figure	4.2.

FIGURE	4.2	Flow	diagram	for	S–I–R	model.

To	write	down	the	discrete	dynamical	system,	we	proceed	as	usual,	forming	an	equation	for
each	compartment	based	on	the	arrows	entering	and	leaving.	For	the	susceptible	compartment,
we	only	have	one	arrow.	Since	the	arrow	is	leaving,	it	represents	a	subtraction	and	we	have

This	equation	says	that	the	number	of	susceptibles	one	day	equals	the	number	who	were
susceptible	the	previous	day	minus	those	who	became	infective.

For	the	infective	compartment,	we	must	account	for	two	arrows,	one	representing	an	addition
and	one	a	subtraction:



Translation:	The	number	of	infectives	one	day	is	equal	to	the	number	of	infectives	from	the	day
before	plus	the	new	infectives	minus	those	who	recovered.

Finally,	for	the	removed	compartment,	we	have

The	number	in	the	removed	compartment	one	day	is	equal	to	the	number	who	were	there	the
previous	day	plus	the	newly	removed.

Altogether	our	S–I–R	model	is	given	by	the	discrete	dynamical	system

The	next	step	is	to	create	an	Excel	spreadsheet	to	allow	us	to	investigate	and	analyze	the
model.

Not	much	is	new	here	as	far	as	Excel	goes,	but	the	equations	we	need	to	type	in	are	more
complicated,	so	we	need	to	exercise	extra	caution.	The	important	parameters	for	a	particular
epidemic	are	β,	δ,	and	N,	so	we	store	them	in	their	own	cells	for	later	experimentation.	We
will	need	a	column	each	for	the	day,	the	number	of	susceptibles,	the	number	of	infectives,	and
the	number	who	have	been	removed.	We	do	not	yet	have	a	real	situation	to	consider,	so	we	use
stand-in	values	for	β,	δ,	N,	S(0),	I(0),	and	R(0).

At	the	outset	of	an	epidemic,	no	one	has	been	removed	yet	so	we	set	 .	We	choose	
	for	our	total	population,	and	we	let	 	so	that	initially	there	are	five	infectives.

In	order	to	keep	our	total	population	constant,	we	need	to	set	 .	(No	one	is
removed	so	everyone	who	is	not	infective	is	susceptible.)	Finally	we	let	 	and	 .
Note	that	it	is	okay	for	β	and	δ	to	not	be	whole	numbers	because	they	represent	average	values.
Before	entering	any	equations,	our	spreadsheet	setup	should	appear	as	in	Figure	4.3.



FIGURE	4.3	S–I–R	Excel	model	setup.

When	entering	the	formulas,	we	need	to	be	careful	to	refer	to	the	appropriate	columns.	For
example,	the	formula	for	S(t)	should	be	entered	into	cell	B9	as	“=	B8 − $D$3*C8*B8/$D$5.”
The	model	with	formulas	displayed	is	given	in	Figure	4.4.

FIGURE	4.4	S–I–R	Excel	model	with	formulas	displayed.

Note	that	we	have	automated	the	finding	of	S(0)	so	that	we	only	need	to	enter	the	initial	number
of	infectives	and	Excel	calculates	the	number	of	susceptibles.	After	entering	the	formulas	and
dragging	them	down	over	a	period	of	about	1	month,	we	arrive	at	the	results	shown	in	Figure
4.5	where	we	have	hidden	most	rows.



FIGURE	4.5	S–I–R	Excel	results.

The	results	will	be	much	easier	to	understand	if	we	graph	them.	After	selecting	all	desired
columns,	including	time	and	including	column	headings,	we	choose	a	scatterplot	with	straight
lines	and	markers	from	the	“Charts”	group	of	the	“Insert”	tab.	The	result	is	shown	in	Figure
4.6.



FIGURE	4.6	Graph	of	S–I–R	model	over	time.

Note	that	the	graphs	fit	well	with	our	general	intuition	of	how	the	graphs	should	look:	the	graph
for	S	only	decreases,	the	graph	for	R	only	increases,	and	the	graph	for	I	increases	to	a	peak	and
then	decreases.

We	can	use	graphs	like	this	to	answer	some	natural	questions	about	the	epidemic.



Example	4.2:

Given	 ,	 ,	 ,	 ,	and	 ,	answer	the	following	questions
based	on	the	graph	in	Figure	4.6:

1.	 Approximately	when	was	the	epidemic	at	its	worst?

2.	 How	many	people	were	sick	at	the	peak	of	the	epidemic?

3.	 Approximately	how	long	did	the	epidemic	last?

4.	 Approximately	how	many	people	contracted	the	disease	during	the	course	of	the
epidemic?

We	can	estimate	the	values	on	the	graph	by	inspection,	or	we	can	get	the	exact	Excel
values	by	hovering	over	any	point	of	interest	on	the	graph	with	our	cursor.	Just	place	the
cursor	on	the	point	of	interest	and	pause.	In	a	brief	moment	a	box	will	pop	up	to	reveal	the
exact	values	of	the	data	point.

The	answer	to	question	1	is	the	time	at	which	the	graph	for	I	hits	its	peak:	day	9.	For
number	2	we	find	the	value	for	I	at	the	peak:	roughly	432.	For	number	3	we	look	for	the
approximate	time	corresponding	to	when	the	number	of	infectives	reaches	0:	roughly	day
27.	For	number	4	we	look	at	the	total	in	the	R	category	at	the	end	of	the	epidemic	because
in	order	for	someone	to	be	removed,	they	must	have	first	gotten	sick.	This	number	is
roughly	987.

Even	this	initial	model	has	met	with	remarkable	success	when	compared	to	real	data.	As	we
shall	see	in	later	sections,	the	S–I–R	model	is	also	important	because	it	helped	to	make	clear
some	fundamentally	important	theoretical	results	that	have	had	far-reaching	practical
consequences.	In	the	next	section,	we	use	the	S–I–R	model	to	model	a	real	epidemic.

4.1.1	The	Eyam	Plague
Once	a	model	has	been	developed,	it	is	important	to	test	its	predictions	against	known	data
before	trusting	its	results	or	considering	its	use	in	important	decisions.	A	frequently	cited	such
test	for	the	S–I–R	model	was	carried	out	by	G.	F.	Raggett	using	the	famous	example	of	the
plague	that	ravaged	the	village	of	Eyam,	England,	from	1665	to	1666	(Raggett,	1982).	In	this
remarkable	event	the	Reverend	Mompesson	convinced	the	citizens	of	Eyam	to	abide	by	a	self-
imposed	quarantine	in	the	hopes	of	sparing	nearby	villages.	Mompesson	was	also	responsible
for	keeping	the	detailed	records	that	we	use	in	the	discussion	that	follows.

The	story	of	the	Eyam	plague	has	continued	to	intrigue	and	inspire	people	to	the	present	day.
The	2001	novel	Year	of	Wonders	by	Geraldine	Brooks	is	a	fictionalized	account	of	the	Eyam
plague.	The	1985	children’s	book	Children	of	Winter	by	Berlie	Doherty	also	recounts	the
story.	Not	only	has	the	Eyam	plague	made	its	way	into	popular	culture,	but	it	has	turned	out	to



provide	valuable	clues	to	today’s	scientists	for	HIV	research.	The	excerpt	below	outlines	the
fascinating	link	between	the	Eyam	plague	and	HIV	treatment	(Frontline:	The	Age	of	Aids,
2006):

In	the	mid-1990s,	after	scientists	discovered	that	HIV	needs	to	bind	to	two	receptor
proteins,	Dr.	Stephen	O'Brien,	chief	of	the	Laboratory	of	Genomic	Diversity	at	the	National
Cancer	Institute,	identified	a	small	number	of	people	who,	despite	repeated	exposures	to
HIV,	had	not	been	infected.	He	found	that	these	people	had	a	mutated	form	of	one	of	HIV’s
receptor	proteins,	the	CCR5	protein	on	the	surface	of	the	CD4	cell.	This	genetic
abnormality	doesn’t	do	any	harm,	and	it	gives	those	who	have	it	immunity	from	HIV.

But	how	did	this	particular	mutation	develop?	Testing	the	DNA	of	direct	descendants	of
villagers	from	the	British	town	of	Eyam,	which	went	into	voluntary	quarantine	after	being
infected	by	the	plague	in	1665,	Dr.	O’Brien	discovered	that	those	who	survived	the	black
death	all	had	the	CCR5	mutation.	To	confirm	his	theory,	he	tested	people	from	all	different
backgrounds	for	the	mutation.	Native	Americans,	Africans,	and	Asians	did	not	have	the
mutation	at	all,	but	about	14	percent	of	the	descendants	of	Eyam	did,	as	did	people
descended	from	other	areas	hit	hard	by	the	plague.

O’Brien’s	discovery	led	to	a	breakthrough	in	HIV	treatment:	the	third	class	of	anti-HIV
drugs	developed,	called	fusion	inhibitors,	which	bind	to	the	CCR5	protein	to	protect	CD4
cells	from	HIV.

Many	factors	contribute	to	making	the	Eyam	plague	a	good	candidate	against	which	to	test	our
model.	We	briefly	discuss	some	of	these	features	below	and	refer	the	reader	to	Raggett’s
article	for	a	fuller	treatment	(Raggett,	1982):

The	most	questionable	assumption	of	the	S–I–R	model	is	the	assumption	of	homogeneous
mixing	of	the	population.	While	we	cannot	hope	that	this	is	ever	entirely	accurate,	it	is
certainly	more	reasonable	for	a	small	village	with	a	population	of	350	than,	say,	a	major
metropolitan	area.

The	S–I–R	model	assumes	that	the	population	is	free	from	population	effects	like	new
births	or	natural	mortality.	Since	the	Eyam	plague	lasted	approximately	1	year,	this
assumption	will	not	be	100%	accurate.	However,	the	time	span	is	still	short	enough	that	it
is	not	unreasonable	to	neglect	the	small	number	of	births	or	natural	deaths	that	would	have
occurred	during	the	course	of	the	epidemic.

The	S–I–R	model	assumes	that	the	population	is	free	from	the	effects	of	migration.	Here
our	assumption	is	valid	because	of	the	remarkable	self-imposed	quarantine	undertaken	by
the	village.

A	real	obstacle	for	testing	the	S–I–R	model	against	historical	epidemics	is	the	lack	of
available	data	with	which	to	compare	it.	Thanks	to	the	Reverend	Mompesson	and	some
deductive	reasoning	by	Raggett,	we	have	a	reasonable	collection	of	data	from	the	Eyam
plague.	One	important,	though	certainly	unfortunate,	observation	that	Raggett	uses	is	that	the
plague	in	the	seventeenth	century	was	nearly	100%	fatal.	Thus,	the	records	kept	of	the



deaths	due	to	plague	correspond	almost	exactly	to	the	removed	compartment	in	the	S–I–R
model;	only	in	this	instance	there	is	no	recovery	(Raggett,	1982).

In	the	records	kept	of	the	Eyam	plague,	it	is	apparent	that	there	were	actually	two	outbreaks,
the	second	being	roughly	twice	as	severe	as	the	first.	It	is	to	this	second	more	severe	outbreak
that	Raggett	applies	the	S–I–R	model.	The	total	population	at	the	onset	of	the	second	wave	was

,	and	Raggett	used	a	duration	of	infectivity	of	 	days	(6	days	of	incubation + 5
days	of	illness).	Table	4.1	includes	the	Eyam	plague	data	collected	by	Reverend	Mompesson
and	first	published	in	1865s	History	of	Eyam	by	W.	Wood	(1865).

TABLE	4.1	Numbers	of	Susceptibles,	Infectives,	and	Removed	for	the	Eyam	Plague,
1666,	as	Recorded	by	Reverend	Mompesson

Numbers	of	Susceptible,	Infective,	and	Removed	during	the	Eyam	Plague
Date	1666 Susceptibles Infectives Removed
June	19 254 7 0
July	3 235 15 11
July	19 201 22 38
August	3 154 29 78
August	19 121 20 120
September	3 108 8 145
September	19 97 8 156
October	4 Incomplete	data Incomplete	data 167
October	20 83 0 178

Note	that	we	have	 ,	 ,	 ,	 ,	and	 .	What	remains	is	to	find
the	value	for	β	that	produces	the	best	fit	to	the	Eyam	data.	Raggett	presents	a	detailed	argument
for	his	determination	of	β	that	is	beyond	the	scope	of	this	text.	However,	by	using	a	trial-and-
error	approach	with	Excel,	we	will	get	very	close	to	what	Raggett	found.	Later	in	this	chapter
we	confirm	our	choice	with	an	alternate	algebraic	method.

E.15	Date	Format	and	Plotting	Data	Points
We	start	with	our	S–I–R	model	spreadsheet	and	enter	the	known	parameters.	In	the	cell	for

,	we	type	in	the	date	“June	19”	and	recopy	the	column	down	from	there.	Excel	should
automatically	change	all	time	values	to	date	format.	We	copy	all	columns	down	until	the
date	reaches	November	20,	1	month	past	the	end	of	the	epidemic.	Remember	that	instead
of	clicking	and	dragging,	formulas	may	be	copied	down	by	double-clicking	on	the	bottom
right-hand	corner.

Next	we	need	to	create	columns	for	the	actual	data	collected	by	Raggett.	We	call	these
columns	S-Data,	I-Data,	and	R-Data	to	distinguish	them	from	our	model-generated



numbers.	Working	from	Table	4.1	we	type	in	all	of	the	data	at	the	appropriate	date.	The
spreadsheet	setup	with	all	data	entered	should	appear	as	in	Figure	4.7.	We	have	hidden
the	rows	for	June	21–July	1	to	display	more	of	the	data.	The	value	for	β	is	just	a	stand-in
value.

FIGURE	4.7	Eyam	plague	Excel	setup.

The	easiest	way	to	find	the	best	value	for	β	is	to	graph	both	the	model	and	the	data	on	the
same	axes	and	then	experiment	with	β	until	the	model	graph	lines	up	as	closely	as
possible	with	the	data.	We	select	all	seven	columns	through	November	20	and	insert	a
scatterplot.	Excel	will	automatically	graph	the	numbers	in	the	data	columns	as	distinct
points	rather	than	connected	lines.	After	some	formatting	changes	and	with	the	value	for	β
set	at	0.3,	the	graph	should	appear	as	in	Figure	4.8.



FIGURE	4.8	S–I–R	model	comparison	with	Eyam	plague	data.

Note	that	we	do	not	yet	have	very	good	agreement	with	the	data!

After	experimenting	with	different	values	for	β,	we	find	that	β	should	fall	somewhere	in
the	range	from	0.147	to	0.150.	We	will	use	 	as	this	value	seems	to	give	the	best
visual	fit.	With	this	value	of	β,	our	graph	should	appear	as	in	Figure	4.9.	The	graph	shows
a	remarkably	good	fit.

FIGURE	4.9	Best	S–I–R	model	fit	to	Eyam	plague	data.

Having	determined	that	 	produces	a	very	good	fit	for	our	data,	we	note	that	we	could
now	use	this	value	to	predict	the	course	of	similar	plague	epidemics	for	which	we	may	not



have	data.

We	should	point	out	that	some	have	criticized	Raggett’s	results	with	the	Eyam	plague	as	“too
good	to	be	true”	because	bubonic	plague	is	spread	from	infected	rodents	via	fleas,	a	fact	not
accounted	for	in	the	model	(Brauer	&	Castillo-Chavez,	2001).	However,	Murray	points	out
that	pneumonic	plague	is	easily	transmitted	from	person	to	person	via	coughing,	and	it	is
plausible	that	this	was	the	form	of	plague	in	the	Eyam	outbreak	(Murray,	1993).	Likewise
criticisms	of	the	villagers’	decision	to	quarantine	themselves	as	futile	or	harmful	also	seem
unfounded	given	the	likelihood	of	the	pneumonic	form	being	prevalent,	the	possibility	of	flea
transmission	via	human	migration,	and	the	fact	that	surrounding	communities	were	in	fact
spared.

In	the	next	section	we	turn	our	attention	to	a	single	number	that	provides	a	measure	of	how
difficult	a	disease	will	be	to	control.

4.1.2	The	Basic	Reproductive	Rate
A	fundamental	parameter	of	interest	to	epidemiologists	is	the	basic	reproductive	rate	of	a
disease.	The	basic	reproductive	rate	is	usually	denoted	by	R0	(pronounced	as	“R	naught”),	and
it	represents	the	average	number	of	secondary	infections	that	one	infective	person	would
produce	in	a	wholly	susceptible	population.	Finding	an	expression	for	R0	is	one	of	the	first
things	that	a	modeler	will	do	after	creating	a	model	for	a	disease.	For	the	S–I–R	model,	we
have	a	relatively	simple	way	of	finding	R0,	namely,	 .

The	explanation	for	this	formula	depends	on	the	definitions	of	β	and	δ.	Remember	that	β	is	the
number	of	effective	contacts	that	an	infective	has	each	day	and	δ	is	the	number	of	days	an
individual	is	available	to	spread	the	disease.	Thus,	 	gives	the	total	number	of	sufficiently
intimate	contacts	that	an	infective	will	have	during	the	period	of	infectivity.	In	a	population
made	up	entirely	of	susceptibles,	each	of	these	contacts	will	result	in	a	new	infective,	and	so	

.

Because	it	takes	into	account	both	the	contact	rate	and	the	duration	of	infectivity,	R0	is
considered	a	good	measure	of	how	difficult	a	disease	will	be	to	control	or	eradicate.	A
disease	with	a	high	R0	value	indicates	a	disease	with	either	a	high	contact	rate	so	it	can	be
spread	easily,	a	long	duration	so	it	can	be	spread	for	a	long	time,	or	both.

The	parameter	R0	is	a	difficult	quantity	to	measure	directly,	but	it	is	easier	to	find	than	β.	We
will	see	later	in	this	chapter	how	to	determine	R0	from	real	data.

Note	that	if	we	know	both	R0	and	δ,	then	we	can	immediately	find	β	by	computing	 .	In	fact
this	is	the	usual	practice	for	finding	β:	use	field	data	to	find	R0	and	then	deduce	β	from	it.

For	the	Eyam	plague,	we	were	able	to	determine	 	through	trial	and	error.	Since	we
also	know	 ,	we	have	that	 .	For	comparison	and	for	use	in	later
examples,	we	include	in	Table	4.2	estimated	values	for	R0	from	a	variety	of	historical



epidemics	(Anderson	&	May,	1991).

TABLE	4.2	Estimated	Values	for	R0	and	δ	for	Several	Historical	Epidemics
Source:	Anderson	and	May	(1991),	table	4.1,	p.	70.	Reproduced	with	permission	from	Oxford	University	Press.

Infection Location Time	Period R	0 δ	(Days)

Measles Cirencester,	England 1947–1950 13–14 6–7
England	and	Wales 1950–1968 16–18
Kansas,	United	States 1918–1921 5–6
Ontario,	Canada 1912–1913 11–12
Willesden,	England 1912–1913 11–12
Ghana 1960–1968 14–15
Eastern	Nigeria 1960–1968 16–17

Pertussis England	and	Wales 1944–1968 16–18 7–10
Maryland,	United	States 1943 16–17
Ontario,	Canada 1912–1913 10–11

Chicken	pox Maryland,	United	States 1913–1917 7–8 10–11
New	Jersey,	United	States 1912–1921 7–8
Baltimore,	United	States 1943 10–11
England	and	Wales 1944–1968 10–12

Diphtheria New	York,	United	States 1918–1919 4–5 2–5
Maryland,	United	States 1908–1917 4–5

Scarlet	fever Maryland,	United	States 1908–1917 7–8 14–21
New	York,	United	States 1918–1919 5–6
Pennsylvania,	United	States 1910–1916 6–7

Mumps Baltimore,	United	States 1943 7–8 4–8

England	and	Wales 1960–1980 11–14
Netherlands 1970–1980 11–14

Rubella England	and	Wales 1960–1970 6–7 11–12
West	Germany 1970–1977 6–7
Czechoslovakia 1970–1977 8–9
Poland 1970–1977 11–12
Gambia 1976 15–16



Poliomyelitis United	States 1955 5–6 14–20
Netherlands 1960 6–7

HIV	(type	1) England	and	Wales	(male	homosexuals) 1981–1985 2–5
Nairobi,	Kenya	(female	prostitutes) 1981–1985 11–12
Kampala,	Uganda	(heterosexuals) 1985–1987 10–11

Note	that	like	β,	R0	depends	not	only	on	the	disease	but	also	on	the	society	in	which	the	disease
is	present.

The	basic	reproductive	rate	is	a	fundamental	disease	parameter	that	can	be	estimated	from	the
data	collected	on	the	number	of	infectives	during	an	epidemic.	However,	its	relationship	to	any
particular	collection	of	model	parameters	depends	on	the	model	chosen.	We	will	see	that	as
we	refine	the	basic	S–I–R	model	in	the	sections	that	follow,	the	formula	 	will	need	to
be	updated	as	well.

In	the	next	sections	we	use	R0	to	develop	some	important	general	results.

4.1.3	Threshold	Theorems
One	of	the	most	important	contributions	to	mathematical	epidemiology	in	the	work	of	Kermack
and	McKendrick	is	their	so-called	threshold	theorem,	which	was	one	of	the	first	elucidations
of	the	idea	of	an	epidemic	threshold	(Bailey	N.	T.,	1975).	We	describe	one	version	of	their
theorem	in	the	following	text,	and	then	we	investigate	its	health	practice	consequences	for
vaccination	programs.

An	epidemic	starts	to	wane	once	the	number	of	infectives	starts	to	decrease	over	time.	In	a
closed	population	this	means	that	the	epidemic	will	die	out	once	the	outflows	for	the	I
compartment	become	greater	than	the	inflows.	Recall	that	the	only	outflow	for	I	is	given	by	the

expression	 	and	the	only	inflow	by	 .	Our	vague	notion	of	what	leads	to
the	demise	of	an	epidemic	can	thus	be	expressed	mathematically	as

To	simplify	our	notation,	we	suppress	the	dependence	on	t	and	note	that	an	epidemic	begins	to

die	out	once	 .

We	can	safely	assume	that	 	since	otherwise	the	disease	would	not	be	present	at	all.	Thus
we	can	divide	both	sides	of	the	inequality	by	I	without	changing	the	direction	of	the	inequality

signs.	We	have	 .

We	note	that	β	must	also	be	a	positive	number	since	otherwise	the	disease	would	not	be
transmissible.	Dividing	both	sides	of	the	inequality	by	β	leaves	the	direction	of	the	inequality



unchanged	and	gives	us	 .	Since	N	is	the	total	population,	the	right-hand	side	of	the
inequality	represents	the	proportion	of	susceptibles	in	the	population.	Finally	we	recall	that	

	so	that	 .

We	can	now	summarize	all	of	our	work	in	the	preceding	discussion	with	the	following	version
of	the	Kermack–McKendrick	threshold	theorem.

Theorem	4.1

Threshold	Theorem	I:	An	epidemic	begins	to	die	out	when	the	proportion	of	people	who
are	susceptible	drops	below	the	threshold	value	given	by

where	R0	is	the	basic	reproductive	rate	of	the	disease.

If	we	carry	the	algebra	one	step	further	and	multiply	both	sides	of	the	inequality	 	by	N,

we	have	 .	This	provides	us	with	an	equivalent	version	of	Threshold	Theorem	I.

Theorem	4.2

Threshold	Theorem	II:	An	epidemic	begins	to	die	out	when	the	number	of	susceptibles
drops	below	the	threshold	value	given	by

where	R0	is	the	basic	reproductive	number	of	the	disease	and	N	is	the	total	population
size.

To	complete	our	justification	of	the	theorems,	we	need	to	tie	up	one	loose	end.	Namely,	how
do	we	know	that	once	the	number	of	susceptibles	drops	below	the	threshold,	it	will	stay	below
the	threshold?	In	other	words,	we	have	to	be	sure	that	once	the	threshold	is	crossed,	the
epidemic	really	does	die	out	and	cannot	rebound.

First	we	recall	the	equation	for	the	number	of	susceptibles:



We	see	that	from	day	to	day	we	find	the	new	number	of	susceptibles	by	subtracting	a
nonnegative	number.	In	other	words,	the	number	of	susceptibles	is	always	decreasing	or
constant.	Thus	once	the	number	of	susceptibles	falls	below	a	given	value,	it	can	never	rise
above	it	later.

In	the	next	example	we	show	how	to	apply	the	theorem	to	the	Eyam	plague.

Example	4.3:

Determine	the	number	of	susceptibles	below	which	the	Eyam	plague	began	to	die	out.

Here	we	apply	Threshold	Theorem	II.	The	theorem	tells	us	that	if	the	number	of	people

who	are	still	susceptible	to	the	plague	falls	below	 ,	then	the	epidemic	will	begin	to

wane.	Using	the	parameter	values	from	the	Eyam	plague,	we	calculate	
.	We	see	that	159.24	susceptibles	are	the	threshold	value,	and	a	quick	check	of	our	Excel
graph	in	Figure	4.10	verifies	that	this	indeed	was	the	point	at	which	the	plague	epidemic
began	to	wane.

FIGURE	4.10	Threshold	theorem	applied	to	Eyam	plague.

After	locating	the	value	159.24	on	the	graph	for	susceptibles,	we	note	that	at	the	same
point	in	time,	the	infectives	graph	is	at	its	peak.	Past	that	point,	the	epidemic	begins	to	die
out.

The	next	example	emphasizes	how	Threshold	Theorem	II	can	be	used	to	get	a	sense	of	how



severe	a	potential	epidemic	will	be.

Example	4.4:

Suppose	an	outbreak	of	diphtheria	occurs	in	a	school	that	enrolls	200	students.	Use
Threshold	Theorem	II	to	analyze	the	epidemic.

After	consulting	Table	4.2,	we	use	 	as	a	reasonable	value	for	a	diphtheria	outbreak.
Since	there	are	200	students	in	the	school,	the	theorem	tells	us	that	the	epidemic	will

reach	its	peak	when	there	are	 	students	who	remain	susceptible.	Thus	the	S–
I–R	model	projects	that	over—likely	well	over—150	students	will	become	ill	throughout
the	course	of	the	epidemic.

In	the	next	section	we	connect	the	threshold	theorems	to	vaccination	programs	and	the	notion	of
herd	immunity.

4.1.4	Vaccination	Programs	and	Herd	Immunity
From	the	standpoint	of	our	S–I–R	model,	a	vaccination	would	have	the	effect	of	transferring	an
individual	directly	from	the	susceptible	compartment	to	the	removed	compartment.	A	triumph
of	the	S–I–R	model	is	that	it	allows	us	to	estimate	how	many	people	need	to	be	vaccinated	in
order	to	prevent	an	epidemic,	and	it	provides	mathematical	evidence	that	we	need	not
vaccinate	everyone	in	order	to	do	so.	In	other	words	the	model	predicts	the	existence	of	an
observed	phenomenon	known	as	herd	immunity:	the	protection	of	an	entire	population	from	a
disease	achieved	by	vaccinating	some—but	not	all—members	of	the	population.

The	threshold	theorems	in	the	previous	section	tell	us	that	if	the	number,	or	proportion,	of
susceptible	individuals	falls	below	a	certain	value,	then	there	will	not	be	enough	transmissions
to	susceptibles	for	the	disease	to	progress:	the	epidemic	will	begin	to	die	out.	Since
vaccinations	remove	people	from	the	susceptible	compartment,	we	can	prevent	an	epidemic
from	starting	by	vaccinating	enough	people	to	reduce	the	number	of	remaining	susceptibles	to
below	the	threshold.	It	is	perhaps	counterintuitive,	but	we	do	not	need	to	vaccinate	everyone.
This	is	very	good	news,	since	as	Anderson	and	May	put	it,	“As	it	will	never	be	possible	to
immunize	every	last	individual,	such	indirect	effects	of	‘herd	immunity’	are	crucial	in
eradication	programmes	(Anderson	&	May,	1991).”

The	theorem	below	reports	the	number	of	people	who	need	to	be	vaccinated	in	order	to
prevent	an	epidemic.



Theorem	4.3

Herd	Immunity	Theorem:	In	order	to	prevent	an	epidemic,	the	proportion	of	the

population	vaccinated	must	be	at	least	 .

The	justification	for	the	theorem	is	not	long.	We	know	from	Threshold	Theorem	I	that	an

epidemic	will	die	out	if	the	proportion	of	susceptibles	drops	below	 .	Since
vaccinations	remove	people	from	the	susceptible	compartment,	we	must	vaccinate	enough

people	that	the	proportion	of	remaining	susceptibles	is	less	than	 .	That	means	that	the

proportion	who	are	vaccinated	must	be	greater	than	 .	For	example,	if	we	need	to

reduce	the	proportion	of	susceptibles	to	below	 ,	then	we	need	to	vaccinate	more	than	

	of	the	population.

Example	4.5:

Determine	the	percent	of	the	population	that	would	need	to	be	vaccinated	in	order	to
prevent	an	epidemic	of	polio	similar	to	the	one	in	the	United	States	in	1955.

To	determine	the	vaccination	percentage,	we	first	need	to	know	R0.	For	the	epidemic
described,	we	estimate	from	Table	4.2	that	 .	Applying	the	Herd	Immunity

Theorem	gives	us	 .	If	we	can	manage	to	vaccinate	at	least	82%	of
the	population,	we	will	prevent	the	epidemic.

In	Table	4.3	we	repeat	Table	4.2,	this	time	including	a	column	for	the	predicted	vaccination
percentage	that	would	prevent	each	epidemic.

TABLE	4.3	The	Vaccination	Coverage	Necessary	to	Prevent	an	Epidemic	According	to
the	Basic	S–I–R	Model

Infection Location Time
Period

R	0 S–I–R	Vaccination
%

Measles Cirencester,	England 1947–1950 13–
14

92–93



England	and	Wales 1950–1968 16–
18

94

Kansas,	United	States 1918–1921 5–6 80–83
Ontario,	Canada 1912–1913 11–

12
91–92

Willesden,	England 1912–1913 11–
12

91–92

Ghana 1960–1968 14–
15

93

Eastern	Nigeria 1960–1968 16–
17

94

Pertussis England	and	Wales 1944–1968 16–
18

94

Maryland,	United	States 1943 16–
17

94

Ontario,	Canada 1912–1913 10–
11

90–91

Chicken	pox Maryland,	United	States 1913–1917 7–8 86–88
New	Jersey,	United	States 1912–1921 7–8 86–88
Baltimore,	United	States 1943 10–

11
90–91

England	and	Wales 1944–1968 10–
12

90–92

Diphtheria New	York,	United	States 1918–1919 4–5 75–80
Maryland,	United	States 1908–1917 4–5 75–80

Scarlet	fever Maryland,	United	States 1908–1917 7–8 86–88
New	York,	United	States 1918–1919 5–6 80–83
Pennsylvania,	United	States 1910–1916 6–7 83–86

Mumps Baltimore,	United	States 1943 7–8 86–88
England	and	Wales 1960–1980 11–

14
91–93

Netherlands 1970–1980 11–
14

91–93

Rubella England	and	Wales 1960–1970 6–7 83–86
West	Germany 1970–1977 6–7 83–86



Czechoslovakia 1970–1977 8–9 88–89
Poland 1970–1977 11–

12
91–92

Gambia 1976 15–
16

93–94

Poliomyelitis United	States 1955 5–6 80–83
Netherlands 1960 6–7 83–86

HIV	(type	1) England	and	Wales	(male
homosexuals)

1981–1985 2–5 50–80

Nairobi,	Kenya	(female	prostitutes) 1981–1985 11–
12

91–92

Kampala,	Uganda	(heterosexuals) 1985–1987 10–
11

90–91

Note	that	the	higher	the	R0	the	harder	a	disease	will	be	to	control	through	vaccinations.	It	is
also	interesting	to	note	that	polio	has	one	of	the	lowest	values	of	R0	and	also	happens	to	be	a
disease	that	has	successfully	been	eradicated	in	the	United	States.

4.1.5	Equilibrium	Points
As	discussed	earlier	in	the	text,	equilibrium	values	are	an	important	feature	of	any	model.
Knowing	the	equilibrium	values	and	how	the	model	behaves	near	them	gives	us	some	insight
into	what	we	should	expect	from	the	situation	we	are	modeling.	Recall	that	our	definition	of	an
equilibrium	point	is	one	where	if	we	plug	the	values	into	the	model,	then	we	get	the	same
values	out	of	the	model.	For	the	S–I–R	model,	this	means	that	an	equilibrium	point	will	be	a
set	of	values	(S*, I*, R*)	at	which	the	model	does	not	change.	Thus	we	need	to	solve	the
following	system	for	points	(S*, I*, R*):

After	a	quick	simplification	to	each	equation,	we	have



The	last	equation	tells	us	that	in	order	to	achieve	equilibrium,	we	must	have	 .	If	 ,
then	the	first	two	equations	each	give	us	 .	So	if	 ,	S*	and	R*	may	be	anything	as	long
as	 .	Thus	we	actually	have	an	infinite	number	of	equilibrium	points,	all	sharing	the
requirement	that	 .	The	only	way	a	disease	well	modeled	by	the	S–I–R	model	can	achieve
a	steady	state	is	by	disappearing	altogether.	Epidemics	that	are	well	modeled	by	the	S–I–R
model	will	never	enter	an	endemic	state,	where	the	disease	is	ever	present	in	the	population.
As	we	will	see	in	the	next	section,	the	inclusion	of	births	and	deaths	in	the	model	gives	rise	to
the	possibility	of	endemicity.

4.1.6	Section	Exercises

1.	 Given	 ,	 ,	 ,	 ,	and	 ,	produce	a	graph	of	the	S–I–R
model	over	time,	and	use	it	to	answer	the	following	questions:

a.	 Approximately	when	was	the	epidemic	at	its	worst?

b.	 How	many	people	were	sick	at	the	peak	of	the	epidemic?

c.	 Approximately	how	long	did	the	epidemic	last?

d.	 Approximately	how	many	people	contracted	the	disease	during	the	course	of	the
epidemic?

2.	 Given	 ,	 ,	 ,	 ,	and	 ,	produce	a	graph	of	the	S–I–R
model	over	time,	and	use	it	to	answer	the	following	questions:

a.	 Approximately	when	was	the	epidemic	at	its	worst?

b.	 How	many	people	were	sick	at	the	peak	of	the	epidemic?

c.	 Approximately	how	long	did	the	epidemic	last?

d.	 Approximately	how	many	people	contracted	the	disease	during	the	course	of	the
epidemic?

3.	 Suppose	that	during	the	Eyam	plague	the	duration	of	infectivity	was	10	days	rather	than	11
so	that	 .	Graphically	determine	the	corresponding	best	choice	for	β	to	two	decimal
places	of	accuracy.

4.	 Imagine	all	possible	arrows	connecting	the	compartments	for	S,	I,	and	R	on	a	flow
diagram.	State	the	practical	meaning	of	each	arrow.

5.	 Suppose	an	epidemic	has	 	and	 .



a.	 Determine	the	maximum	number	of	new	infections	a	single	infective	would	be	expected
to	cause.

b.	 Explain	why	we	do	not	typically	expect	a	single	infective	to	cause	that	many	new
cases.

6.	 Extension:	Suppose	a	disease	confers	no	immunity	upon	recovery	so	that	those	who	do
recover	are	immediately	susceptible	again.

a.	 Draw	a	flow	diagram	for	this	situation.

b.	 Find	the	DDS	for	the	situation.

c.	 Implement	the	model	in	Excel.

d.	 Find	an	example	of	a	disease	that	is	might	be	well	modeled	by	this	new	model.

7.	 Extension:	Use	an	IF	statement	to	modify	the	Excel	S–I–R	model	so	that	it	will	not	report
negative	values	of	susceptibles.	(See	Chapter	3	for	similar	examples	involving	the
Lanchester	model	and	the	Hughes	model.)

8.	 Use	the	S–I–R	model	to	model	an	epidemic	of	your	choice	from	Table	4.2.

a.	 Note	the	parameter	values	you	used	and	how	you	arrived	at	them.

b.	 Produce	a	graph	for	the	epidemic	over	a	suitable	time	period.

c.	 Apply	the	threshold	theorem	to	determine	how	many	susceptibles	were	present	when
the	epidemic	began	to	die	out.

d.	 Verify	the	theorem’s	result	by	noting	the	appropriate	point	on	your	graph.

e.	 Determine	how	many	people	were	sick	at	the	peak	of	the	epidemic.

f.	 Determine	how	many	people	in	total	became	ill	during	the	epidemic.

g.	 Determine	the	vaccination	percentage	required	to	prevent	an	epidemic	of	this	disease.

9.	 Repeat	Exercise	10	with	a	different	epidemic.

10.	 Extension:	Modify	the	basic	S–I–R	Excel	spreadsheet	to	include	a	one-time	round	of
vaccinations.	You	should	store	the	vaccination	percentage	in	its	own	cell	for	easy
experimentation.	Use	your	spreadsheet	to	verify	the	result	in	the	Herd	Immunity	Theorem.

11.	 Extension:	An	important	consideration	when	proposing	a	vaccination	strategy	is	the
vaccine’s	efficacy,	that	is,	the	percentage	of	vaccines	administered	that	actually	achieve
the	desired	immunity.	Incorporate	a	parameter	for	vaccine	efficacy	into	the	modified	S–I–R
model	in	Exercise	12.

12.	 Extension:	An	important	consideration	when	proposing	a	vaccination	strategy	is	the
vaccine’s	efficacy,	that	is,	the	percentage	of	vaccines	administered	that	actually	achieve
the	desired	immunity.	How	does	the	inclusion	of	a	parameter	for	vaccine	efficacy	affect	the
Herd	Immunity	Theorem?



13.	 Is	it	possible	to	determine	the	total	number	of	people	who	become	ill	by	looking	only	at	the
Infectives	column	in	the	S–I–R	model	spreadsheet?	Explain.

4.2	S–I–R	WITH	VITAL	DYNAMICS
The	S–I–R	model	we	have	studied	so	far	is	a	simple	model	for	describing	and	predicting	the
course	of	an	epidemic.	We	have	noted	that	it	is	particularly	applicable	to	epidemics	that	are
relatively	short	lived	and	occur	in	small,	closed	populations.	A	simplifying	assumption	of	the
model	is	that	of	a	constant	population	where	no	births	or	deaths	occur.	This	assumption	is	fine
if	the	disease	is	only	present	for	a	short	time,	but	many	infectious	diseases	persist	in	a
population	over	many	years,	a	time	span	long	enough	that	any	reasonable	model	must	take	into
account	births	and	deaths.	When	we	include	population	changes	in	a	model,	we	say	that	the
model	includes	vital	dynamics.

In	this	section	we	include	vital	dynamics,	but	we	do	so	in	a	way	that	will	not	disturb	the	model
too	much:	we	assume	that	new	births	and	deaths	balance	each	other	exactly,	so	even	though
people	are	dying	and	being	born,	the	total	population,	N,	does	not	change.

The	inclusion	of	birth	and	death	rates	means	we	have	to	be	careful	about	our	units.	Our	model
time	units	are	days,	whereas	most	birth	and	death	rates	are	reported	as	annual	rates.	Our
solution	is	to	keep	days	as	our	units	and	adjust	our	birth	and	death	rates	to	be	daily	rates.	We
note	that	the	deaths	under	consideration	here	are	those	due	to	natural	causes	and	not	due	to	any
excess	mortality	caused	by	the	disease,	so	it	is	reasonable	to	assume	that	the	death	rate	is	the
same	for	all	compartments.

Let	μ	be	the	daily	birth	rate	for	the	population,	so	that	every	day	μN	new	susceptibles	are	born.
We	need	to	balance	new	births	exactly	with	deaths,	so	every	day	we	have	μS	susceptibles,	μI
infectives,	and	μR	removed	individuals	die	from	reasons	other	than	the	disease.	We
incorporate	the	changes	into	the	flow	diagram	given	in	Figure	4.11.



FIGURE	4.11	Flow	diagram	for	S–I–R	with	vital	dynamics.

Accounting	for	the	four	new	arrows	in	our	DDS	gives

Creating	a	spreadsheet	for	the	modified	model	is	now	just	a	matter	of	making	fairly	minor
alterations	to	the	S–I–R	spreadsheet.	As	with	the	other	parameters,	we	store	μ	in	its	own	cell
for	easy	experimentation	later.	In	the	next	example	we	highlight	some	of	the	differences
introduced	by	the	inclusion	of	vital	dynamics.

Example	4.6:

Use	the	S–I–R	model	with	vital	dynamics	to	predict	the	course	of	an	epidemic	of	chicken
pox	by	answering	the	questions	below.	Assume	the	following	parameters:	 ,	 ,	

,	 ,	and	 .	We	note	that	the	value	for	μ	has	been	set	artificially
high	in	an	effort	to	highlight	the	model	behavior	on	a	reasonable	time	scale.

1.	 Graph	the	model	predictions	over	a	period	of	2	years.

2.	 Approximately	when	does	the	second	epidemic	wave	occur?

3.	 Approximately	how	many	people	were	sick	at	the	peak	of	the	second	epidemic	wave?

4.	 Give	approximate	long-term	values	for	S,	I,	and	R.



First	we	show	the	initial	Excel	setup	in	Figure	4.12.	We	display	the	formula	for	infectives
and	note	that	the	adjustments	to	the	other	formulas	are	similar.

FIGURE	4.12	Excel	S–I–R	with	vital	dynamics	setup.

For	number	1	we	need	to	drag	our	formulas	down	to	day	730.	(Note	that	the	further	down
the	cursor	is	pulled,	the	faster	the	copying	goes.)	Once	we	have	done	that,	we	select	all	of
the	data	we	want	to	include	on	our	graph	including	the	time	column	and	the	column
headings,	select	the	“Insert”	tab,	and	then	select	a	scatterplot	from	the	“Charts”	group.	Our
completed	graph	is	given	in	Figure	4.13.

Note	that	this	graph	is	very	different	than	the	basic	S–I–R	graph.	The	inclusion	of	vital
dynamics	means	the	susceptible	category	is	continually	being	replenished.	Because	of	this
fresh	supply	of	susceptibles,	we	get	repeated	epidemic	waves:	the	disease	hits,	there	is	an
epidemic,	the	disease	appears	to	leave,	and	then	once	there	are	enough	new	susceptibles,
we	get	a	new	epidemic.

To	answer	number	2,	we	see	that	the	second	epidemic	begins	sometime	around	day	500.
For	number	3	we	scroll	down	to	day	500	or	so	in	our	spreadsheet.	By	examining	the
values	in	the	infective	column,	we	see	that	the	actual	peak	of	the	second	epidemic
occurred	at	day	545	with	about	161	cases	of	chicken	pox.



FIGURE	4.13	Graph	of	S–I–R	with	vital	dynamics	over	time.

For	number	4	we	can	only	get	very	rough	estimates	based	on	our	2-year	graph.	We	can	do
better	by	dragging	the	model	down	even	further,	say,	to	year	10.	If	we	do,	we	get	the	graph
shown	in	Figure	4.14.

FIGURE	4.14	Long-term	model	values	for	Example	4.6.

If	we	place	the	cursor	over	our	Excel	graph	where	the	graphs	have	leveled	off,	we	will
see	the	long-term	values.	These	are	about	559	for	the	number	of	susceptibles,	22	for	the
number	of	infectives,	and	4419	for	the	number	removed.	Again,	note	the	contrast	with	the
basic	S–I–R	model:	with	vital	dynamics,	the	disease	never	completely	leaves	the



population.	Instead	it	settles	down	into	an	endemic	state.

As	a	final	remark	we	point	out	that	even	though	the	graphs	for	S,	I,	and	R	all	become	constant,
there	are	still	people	continually	moving	into	and	out	of	the	compartments	due	to	new	births,
new	infections,	recoveries,	and	deaths.	It	is	just	that	all	of	the	processes	result	in	net	changes
of	0	for	each	compartment.

4.2.1	The	Basic	Reproductive	Rate
The	inclusion	of	vital	dynamics	in	our	model	brings	about	an	important	change	for	how	we
calculate	the	basic	reproductive	rate,	R0:	we	can	no	longer	find	it	by	computing	 .	To
see	why,	recall	that	this	first	formula	for	computing	R0	was	based	on	the	observation	that

For	the	basic	S–I–R	model,	this	led	naturally	to	the	formula	 .

Now	we	restate	our	observation	about	R0	in	a	subtle	but	important	way:

Since	we	now	include	deaths	in	our	model,	the	number	of	days	spent	in	I	is	no	longer	the	same
as	the	duration,	δ.	Some	infectives	will	die	from	natural	causes	before	the	duration	of
infectivity	expires;	thus	on	average	infectives	are	not	available	to	spread	the	disease	for	the
entire	duration	of	infectivity.

What	we	need	is	a	way	to	determine	on	average	how	long	an	infective	person	spends	in	the
infective	compartment	that	takes	deaths	into	account.	The	solution	to	this	problem	comes	in	the
form	of	the	Waiting	Time	Principle,	a	result	that	we	will	use	repeatedly	throughout	the
remainder	of	this	chapter.

4.2.2	The	Waiting	Time	Principle
The	key	to	developing	the	new	formula	for	R0	is	focusing	on	the	proportion	of	people	who
leave	the	I	compartment	each	day.	The	Waiting	Time	Principle	shows	that	there	is	a	reciprocal
relationship	between	the	proportion	who	leave	a	compartment	each	day	and	how	long	on
average	one	spends	in	that	compartment.



Theorem	4.4

Waiting	Time	Principle:	Consider	a	compartment	in	a	discrete	dynamical	system	where	a
constant	proportion	of	the	membership	leaves	each	day.	Then	the	average	amount	of	time
someone	spends	in	that	compartment	(in	days)	is	equal	to	the	reciprocal	of	this
proportion:

Equivalently,	we	write

In	practice	we	use	whichever	form	is	more	convenient.

We	showed	that	the	Waiting	Time	Principle	is	at	least	plausible	when	we	related	the	duration

of	infectivity,	δ,	to	the	proportion	leaving	the	infective	compartment	each	day,	 	(see	Example
4.1).	Unfortunately	a	rigorous	justification	of	the	result	requires	both	second	semester	calculus
and	some	probability	theory	and	is	beyond	the	scope	of	this	text.	For	the	interested	reader,	a
proof	that	assumes	the	necessary	prerequisites	is	provided	in	Appendix	D.

In	the	next	example	we	first	show	how	to	apply	the	Waiting	Time	Principle	to	the	basic	S–I–R
model	to	get	a	familiar	result.

Example	4.7:

Use	the	Waiting	Time	Principle	to	determine	the	average	time	someone	spends	in	the
infective	compartment	for	the	basic	S–I–R	model.

According	to	the	flow	diagram,	the	number	of	infectives	leaving	the	I	compartment	each

day	is	given	by	 .	Thus	the	proportion	of	infectives	leaving	the	I	compartment	each	day

is	given	by	  .	According	to	the	Waiting	Time	Principle,	the	average	amount	of	time	an
infective	spends	in	the	I	compartment	is	therefore

Next	we	apply	the	Waiting	Time	Principle	in	the	less	familiar	situation	of	the	S–I–R	model
with	vital	dynamics.



Example	4.8:

Determine	on	average	how	long	someone	spends	in	the	infective	compartment	for	the	S–I–
R	model	with	vital	dynamics.

This	example	is	slightly	more	complex	than	the	last	because	infectives	leave	the
compartment	via	two	routes—recovery	or	death	by	natural	causes.	Thus	the	total	number
of	infectives	who	leave	the	compartment	each	day	will	be	the	sum	of	those	who	recover

and	those	who	die.	This	total	is	given	by	 .	From	this	total	we	can	see

that	the	proportion	who	leaves	I	each	day	is	therefore	given	by	 .	We	are	now	in
position	to	apply	the	Waiting	Time	Principle:

Note	that	because	μ	and	δ	are	both	positive	numbers,	 .	Thus	the	average	time
spent	in	I	for	the	vital	dynamics	model	is	less	than	for	the	basic	S–I–R	model.	This	should
agree	with	our	intuition	since	the	inclusion	of	natural	deaths	should	serve	to	decrease	the
average	time	spent	in	I.

Now	that	we	know	how	long	an	infective	person	typically	stays	in	I,	we	can	see	how	to
compute	R0.	Using	the	same	idea	as	before,	the	number	of	secondary	cases	caused	by	a	single
infective	in	a	wholly	susceptible	population	is	given	by

So	for	the	S–I–R	model	with	vital	dynamics,	our	formula	for	R0	is	 .

We	continue	with	a	computational	example.



Example	4.9:

Find	the	basic	reproductive	rate	for	the	epidemic	of	chicken	pox	in	Example	4.6.

Recall	that	the	parameters	are	given	by	 ,	 ,	and	 .	A	straightforward

application	of	the	formula	for	R0	gives	us	 .

As	we	have	mentioned	previously,	the	parameter	β	is	often	the	most	difficult	parameter	to	find
in	practice.	Typically	we	find	R0	directly	from	field	data,	δ	from	case	studies,	and	μ	from
demographic	studies.	It	is	frequently	up	to	us	to	find	β	as	we	do	in	the	next	example.

Example	4.10:

Suppose	we	know	that	for	an	epidemic	of	mumps,	 ,	 ,	and	 .	Find	β.

We	take	the	formula	for	R0	and	substitute	the	values	we	know:

Now	we	solve	for	β	by	isolating	it	on	one	side	of	the	equation:

We	see	that	β	is	approximately	2	effective	contacts	per	day	per	infective.

Finally	we	show	that	our	new	formula	for	R0	is	really	a	generalization	of	the	previous	one.



Example	4.11:

Verify	that	the	new	formula	for	R0	reduces	to	the	original	formula	if	 ,	that	is,	there	are
no	vital	dynamics.

We	plug	in	 	to	get	 .	This	does	indeed	agree	with	our
formula	for	the	basic	S–I–R	model,	and	it	gives	us	some	confidence	that	the	derivation	of
the	new	formula	was	sensible.

Next	we	examine	the	effect	of	vital	dynamics	on	the	threshold	theorems.

4.2.3	Threshold	Theorems
Just	as	the	inclusion	of	vital	dynamics	leads	to	a	more	complicated	expression	for	R0,	the
development	of	threshold	theorems	is	also	more	involved.	The	process,	however,	is	the	same
as	before:	we	examine	the	conditions	that	would	lead	to	a	decrease	in	I	and	then	follow	up
with	some	algebra.

Note	as	before	that	the	number	of	infectives	will	decrease	whenever	the	outflows	for	I	are
larger	than	the	inflows.	Referring	to	the	flow	diagram	in	Figure	4.11,	we	see	that	the	inequality
representing	this	condition	is	given	by

or

Dividing	through	by	the	positive	number	I,	we	get

Dividing	both	sides	by	β	yields

The	expression	on	the	left-hand	side	of	the	last	inequality	is	the	reciprocal	of	R0;	hence



We	now	state	the	threshold	theorems	for	vital	dynamics.

Theorem	4.5

Threshold	Theorem	I:	An	epidemic	wanes	whenever	the	proportion	of	people	who	are
susceptible	is	below	the	threshold	value	given	by

where	R0	is	the	basic	reproductive	rate	of	the	disease.

As	before	we	can	move	the	N	over	to	obtain	an	equivalent	version	of	the	theorem.

Theorem	4.6

Threshold	Theorem	II:	An	epidemic	wanes	whenever	the	number	of	people	who	are
susceptible	is	below	the	threshold	value	given	by

where	R0	is	the	basic	reproductive	number	of	the	disease	and	N	is	the	total	population
size.

The	slightly	different	language	in	the	statements	of	the	theorems	reflects	the	presence	of	vital
dynamics.	Since	new	births	serve	to	replenish	the	susceptible	compartment,	we	can	no	longer
conclude	that	once	the	susceptibles	fall	below	a	certain	level,	they	will	stay	below	that	level.
In	fact	we	expect	the	new	births	to	eventually	raise	the	number	of	susceptibles	above	the
threshold.	This	observation	has	implications	for	potential	vaccination	programs,	as	we	see	in
the	next	section.

4.2.4	Herd	Immunity
The	threshold	theorems	shed	light	on	where	discussion	of	a	vaccination	program	should	start.
We	know	from	these	theorems	that	if	the	number	or	proportion	of	susceptibles	can	be
maintained	below	a	certain	number,	then	the	epidemic	will	die	out.	Thus	the	goal	of	any
vaccination	program	will	be	to	vaccinate	susceptibles	in	such	a	way	as	to	make	that	happen.
Instead	of	a	one-time	vaccination	campaign	as	in	the	basic	model,	we	must	now	consider	a
more	realistic	program	where	we	have	ongoing	vaccinations	of	newborns.



Theorem	4.7

Herd	Immunity	Theorem:	In	order	to	sustain	protection	against	an	epidemic,	the
proportion	of	newborns	that	must	be	vaccinated	is	given	by

Once	again	the	justification	is	only	a	couple	of	lines	long.	According	to	the	second

threshold	theorem,	we	need	to	maintain	the	proportion	of	susceptibles	below	 .	Thus	our

vaccination	program	must	be	such	that	the	proportion	vaccinated	remains	larger	than	 .

In	its	statement	and	justification,	the	Herd	Immunity	Theorem	for	our	modified	S–I–R	model	is
very	similar	to	the	original.	Note,	however,	that	in	order	to	implement	a	suitable	vaccination
program,	a	lot	more	is	involved	in	the	second	case.	For	the	basic	S–I–R	model,	the	number	of
susceptibles	is	always	decreasing.	This	means	that	a	one-time	round	of	vaccinations	would	be
sufficient	to	halt	the	epidemic.	The	inclusion	of	new	births,	however,	changes	this.	Since	new
susceptibles	are	continually	entering	the	population,	our	vaccination	program	must	now	be
ongoing.	A	one-time	vaccination	spree	cannot	be	sufficient	since	the	number	of	susceptibles
will	eventually	grow	beyond	the	threshold.

Example	4.12:

Assume	that	pertussis,	also	known	as	whooping	cough,	is	a	disease	that	is	well	modeled
by	the	S–I–R	with	vital	dynamics	model.	Determine	the	ongoing	vaccination	percentage
necessary	to	sustain	protection	against	an	epidemic	of	pertussis.	Assume	parameter	values
of	 ,	 ,	and	 .

First	we	find	 .	Once	we	have	R0,	we	apply	the	Herd	Immunity

Theorem	to	get	the	required	vaccination	percentage:	 .	This
percentage	represents	the	minimum	level	of	ongoing	vaccination	coverage	necessary	to
prevent	a	pertussis	epidemic	from	recurring.

In	the	next	section	we	show	that	the	inclusion	of	vital	dynamics	has	interesting	implications	for
the	long-term	behavior	of	our	model.

4.2.5	Equilibrium	Points



The	vital	dynamics	version	of	the	S–I–R	model	exhibits	some	interesting	behavior	that	is	not
present	in	the	basic	model.	Namely,	we	will	see	that	our	new	model	predicts	some	level	of
endemicity	for	most	diseases	it	models.	To	see	this,	we	examine	the	equilibrium	points.	Since
endemicity	indicates	that	a	disease	is	ever	present	in	a	population,	it	will	appear	in	our	model
as	a	long-term	value	for	I	that	is	nonzero.	In	other	words	we	will	see	a	stable	equilibrium	point
(S*, I*, R*)	where	 .

Recall	that	finding	equilibrium	points	amounts	to	finding	values	at	which	the	DDS	remains
constant.	For	our	new	model,	this	amounts	to	solving	the	system	of	equations	below	for
(S*, I*, R*):

We	are	dealing	with	three	equations	in	three	unknowns,	so	it	should	not	be	surprising	that	the
algebra	becomes	messier.	The	payoff	for	our	hard	work	will	be	the	ability	to	predict	the	long-
term	behavior	of	a	potential	epidemic	simply	by	knowing	the	values	of	our	parameters	β,	δ,	μ,
and	N.

We	note	that	as	a	first	simplification,	we	have

On	the	right-hand	side	of	the	second	equation,	we	can	factor	out	I*	to	get

When	a	product	of	two	number	is	0,	at	least	one	of	the	two	numbers	must	be	0	so	we	have	two

cases:	 	or	 .

If	 	substitution	into	the	S*-equation	allows	us	to	find	S*:



Similarly,	substitution	into	the	R*-equation	allows	us	to	find	R*:

Thus	if	 	we	have	found	that	one	of	our	equilibrium	points	is	given	by	
.	In	context	this	equilibrium	point	corresponds	to	the	disease	not	being

present	in	the	population	so	everyone	remains	susceptible.

Next	we	consider	the	case	where	 .	Solving	for	S*	gives

Further	simplification	of	S*	yields	a	concise	expression	for	S*:

To	find	the	corresponding	equilibrium	value	for	I*,	we	substitute	this	value	for	S*	into	the	S*-

equation,	 .	We	get



Finally	we	find	the	equilibrium	value	R*	by	substituting	 	into	the	R*-equation,	

.	This	substitution	gives	us

Putting	all	of	our	equilibrium	values	together	gives	us	our	first	nontrivial	equilibrium	point	for
an	epidemic:

This	shows	that	our	model	allows	for	the	possibility	that	over	time	a	disease	can	enter	an
endemic	state,	which	is	often	observed	in	practice.

Analytically	examining	the	stability	characteristics	in	general	of	equilibria	in	a	model	with
three	dependent	variables	is	beyond	the	scope	of	this	text.	We	only	note	that	for	most
reasonable	parameter	choices,	this	equilibrium	point	will	be	stable	and	represents	the	long-
term	values	for	S,	I,	and	R.	We	provide	evidence	for	this	claim	in	the	following	example.



Example	4.13:

Recall	the	chicken	pox	epidemic	from	Example	4.6	where	 ,	 ,	 ,	
,	and	 .	Confirm	the	estimates	we	made	with	Excel	for	the	long-term

values	of	S,	I,	and	R	using	the	formulas	for	our	nontrivial	equilibrium	point.

By	examining	our	Excel	graph	of	the	model	over	a	10-year	period,	we	estimated	that	the
long-term	values	would	be	559	for	the	number	of	susceptibles,	22	for	the	number	of
infectives,	and	4419	for	the	number	removed.	We	confirm	these	values	by	computing	the

nontrivial	equilibrium	point	 .

First	we	compute	R0:

This	allows	us	to	find	 .

Next	we	have	 .	Finally	we	have	

.	Minor	rounding	differences	aside	our
Excel	work	and	our	algebra	have	produced	the	same	values	for	our	long-term	expectations
for	the	model.

We	have	finally	come	to	the	point	where	we	are	ready	to	connect	the	theory	of	our	models	to
real,	observable	field	data.	As	we	show	in	the	next	section,	R0	is	the	key	to	linking	our	models
to	data.

4.2.6	Section	Exercises

1.	 Consider	an	epidemic	of	mumps	in	a	city	of	1,000,000	similar	to	the	one	in	Baltimore,
Maryland,	in	1943.	Assume	that	initially	10	people	are	infective.

a.	 Use	the	S–I–R	model	with	vital	dynamics	to	model	the	epidemic;	from	Table	4.2	use	
,	 ,	and	 .

b.	 Graph	the	epidemic	over	a	period	of	1	year.	Compare	your	graph	to	the	usual	graph
from	the	S–I–R	model.	How	is	the	new	graph	different?	What	accounts	for	the
difference?

c.	 Graph	the	epidemic	over	a	period	of	2	years.	What	new	phenomenon	do	you	observe?
Explain	why	it	is	happening.



d.	 Graph	the	epidemic	over	a	period	of	10	years.	Describe	what	you	see,	paying
particular	attention	to	the	differences	between	your	new	graph	and	the	standard	S–I–R
graph.

e.	 What	does	Excel	predict	for	the	long-term	number	of	infectives?	What	does	this	mean
practically?

2.	 For	the	epidemic	in	Exercise	1,	find	the	nontrivial	equilibrium	point.	Compare	the	results
of	the	equilibrium	formulas	to	those	predicted	by	the	Excel	graph.

3.	 Repeat	Exercise1	for	an	epidemic	of	your	choosing.	Continue	to	use	the	birth	and	death	rate
of	 .

4.	 Repeat	Exercise	2	for	the	epidemic	you	chose	in	Exercise	3.

5.	 Extension:	Modify	the	S–I–R	with	vital	dynamics	Excel	spreadsheet	so	that	it
automatically	calculates	the	nontrivial	equilibrium	values	for	an	epidemic.

4.3	DETERMINING	PARAMETERS	FROM	REAL	DATA
This	section	provides	us	with	a	vital	link	between	our	models	and	the	real	world.	In	order	for
any	mathematical	model	to	have	the	potential	to	be	useful,	the	model	parameters	must	be
estimated	from	real	data.	For	our	disease	models	so	far,	we	have	relied	on	the	work	of	others
who	have	already	used	real	data	to	provide	estimates	for	R0	for	a	variety	of	diseases.

In	this	section	we	present	two	ways	of	making	such	estimates	for	R0.	Which	of	the	two	methods
we	choose	depends	on	the	state	of	the	disease	in	the	population.	If	the	disease	is	an	ongoing
epidemic,	we	show	how	to	use	case	reports	to	estimate	R0.	On	the	other	hand,	if	the	disease	is
endemic	to	the	population,	we	show	how	to	use	serosurveys	of	the	population	to	estimate	R0.

4.3.1	Determining	R0	at	the	Onset	of	an	Epidemic

Most	of	the	epidemic	modeling	we	have	done	so	far	has	been	retrospective	in	nature:	we	have
modeled	epidemics	that	have	already	occurred	using	parameters	already	provided	to	us.	This
is	important	to	do	when	constructing	a	model	because	comparing	a	model	with	past	data	is
fundamental	to	validating	the	model.	It	can	give	us	confidence	that	what	we	are	doing	is
reasonable,	or	it	can	alert	us	to	the	need	to	modify	the	model.	However,	one	of	the	primary
purposes	of	modeling	is	to	predict	the	course	of	future	events	so	that	we	can	make	decisions
about	what	to	do.

When	faced	with	a	new	epidemic,	decisions	about	what	to	do	must	be	made	quickly.	How
many	people	need	to	be	treated?	Who	do	we	need	to	treat?	How	many	hospital	beds	will	we
need?	How	many	medical	professionals	need	to	be	dispatched	to	the	affected	area?	These	are
the	kinds	of	questions	that	epidemic	models	can	help	answer,	but	first	the	model	parameters
need	to	be	determined.	In	particular	R0	must	be	determined	as	quickly	as	possible.

In	this	section	we	show	how	to	use	case	reports,	that	is,	reports	of	numbers	of	infections,	to



estimate	R0.	Once	we	have	R0,	we	then	deduce	β.

If	we	examine	a	typical	graph	for	I(t),	we	see	the	familiar	shape	in	Figure	4.15.

FIGURE	4.15	Typical	infectives	graph.

If	we	zoom	in	on	the	beginning	part	of	the	graph	as	in	Figure	4.16,	we	get	a	graph	that	looks
very	much	like	the	exponential	growth	curves	from	Chapter	1.	Thus	at	the	onset	of	an	epidemic,
the	number	of	infectives	appears	to	grow	roughly	exponentially.	This	is	the	key	to	determining
R0	from	case	reports.	If	the	number	of	infectives	is	roughly	exponential,	then	recall	from
Chapter	1	that	there	is	some	positive	growth	rate,	r,	for	which	the	DDS	is



FIGURE	4.16	Beginning	of	infectives	graph	is	approximately	exponential.

We	also	have	the	corresponding	explicit	formula

where	I(0)	is	the	initial	number	of	infectives.	It	is	this	explicit	formula	we	use	to	deduce	the
growth	rate	r	from	case	reports—the	first	step	to	determining	R0.	We	outline	the	method	in	the
next	example.



Example	4.14:

Returning	to	the	Eyam	plague	example,	we	know	from	the	Reverend	Mompesson	that	there
were	originally	seven	cases	of	plague	at	the	onset	of	the	epidemic.	We	also	know	that	2
weeks	later	there	were	15	cases.	From	these	two	values,	we	estimate	r.

First	note	that	 	so	that	if	the	number	of	infectives	is	approximately	exponential,	we
have	 .	Knowing	we	have	15	cases	in	2	weeks	allows	us	to	write	

	or	 .	To	solve	for	r	we	write

Finishing	the	computation	with	a	calculator	gives	us	 .

Next	we	have	to	figure	out	how	to	use	our	estimate	for	r	to	get	R0.	To	do	this	we	consider	how
the	number	of	infectives	changes	on	the	first	day	of	an	epidemic,	and	we	approach	the	question
from	two	different	points	of	view.

On	the	one	hand,	if	the	number	of	infectives	is	roughly	exponential	at	the	beginning	of	an
outbreak,	then	the	net	increase	in	infectives	the	first	day	is	given	by	the	number	who	are	added
the	first	day:	rI(0).

On	the	other	hand,	we	know	that	during	the	early	stages	of	an	epidemic,	virtually	everyone	in
the	population	is	susceptible.	Thus	the	number	of	new	cases	caused	by	the	initial	infectives
during	the	first	δ	days	should	be	roughly	equal	to	 .	At	the	end	of	the	first	δ	days,	the
net	change	in	number	of	infectives	will	therefore	be	 	since	the	original	infectives
will	have	been	removed.	Finally	we	estimate	how	the	number	of	infectives	increases	on	day	1

by	taking	the	average	increase	over	the	first	δ	days:	 .

We	now	have	two	different	estimates	for	the	same	quantity:	the	net	change	in	infectives	during
the	first	day	of	an	epidemic.	We	set	them	equal	to	each	other	and	solve	for	R0:



At	last	we	have	the	crucial	link!	To	estimate	R0	for	an	ongoing	epidemic,	we	use	δ	as
determined	by	medical	researchers,	and	we	use	r	as	determined	by	case	reports.	The	last	step
is	to	compute

We	illustrate	the	process	in	the	next	example.

Example	4.15:

Estimate	R0	for	the	Eyam	plague	example	using	the	case	reports	collected	by	Mompesson.

We	recall	that	for	the	Eyam	plague	we	have	 .	In	the	previous	example	we	calculated	
.	The	approximate	value	for	the	basic	reproductive	rate	is	therefore	

.

The	next	example	shows	that	with	R0	in	our	possession,	we	can	go	a	step	further	and	determine
the	elusive	β.



Example	4.16:

Use	R0	to	estimate	β	for	the	Eyam	plague.

When	we	first	modeled	the	Eyam	plague	with	the	S–I–R	model,	we	were	confronted	by
the	difficulty	of	having	to	find	β	ourselves.	Having	no	other	recourse,	we	resorted	to	a
trial-and-error	approach	where	we	experimented	with	different	values	of	β	in	our	Excel
model	until	we	got	the	S–I–R	graph	to	match	the	data	set.	Now	that	we	can	determine	R0
from	data,	we	can	go	one	step	further	and	get	β	as	well.	We	have

Finishing	with	a	calculator	yields	 .	This	compares	favorably	with	the	result	of
our	trial-and-error	approach	that	produced	 .

We	now	have	a	reliable,	data-driven	method	for	finding	model	parameters	that	we	can	use	at
the	outset	of	an	epidemic	when	decisions	are	being	made	rather	than	a	retrospective	trial-and-
error	method	that	fits	our	model	to	the	entire	set	of	data	after	the	epidemic	has	passed.

4.3.2	Determining	R0	from	Serosurveys
If	a	disease	has	been	in	the	population	for	a	while	and	has	settled	down	to	an	endemic	state,
then	the	method	of	the	previous	section	will	not	work	for	determining	R0	because	the	number	of
infectives	will	be	roughly	constant	rather	than	increasing	exponentially.	In	the	endemic	case	we
take	advantage	of	our	work	in	determining	equilibrium	values	for	the	S–I–R	model	with	vital
dynamics.

First	we	note	that	if	a	disease	is	at	or	near	its	(nontrivial)	equilibrium—that	is,	it	has	settled
down	into	a	stable	endemic	state—then	our	previous	work	shows	that	the	proportion	of	the
population	who	are	susceptible	is	given	by

This	follows	immediately	from	the	equilibrium	value	for	the	number	of	susceptibles:



The	good	news	is	that	the	proportion	of	a	population	who	are	susceptible	to	a	disease	is
something	we	can	physically	measure	with	serosurveys,	which	are	blood	tests	of	a	population
for	antibodies	to	a	particular	disease.	Anyone	who	has	the	antibodies	is	no	longer	susceptible
by	virtue	of	already	having	had	the	disease	or	by	vaccination.	Conversely,	the	people	who	are
still	susceptible	to	a	disease	are	precisely	those	without	antibodies	in	their	blood.	If	we	test	a
large	enough	number	of	people,	then	we	will	have	a	good	idea	of	what	proportion	of	the
population	is	still	susceptible.	Once	we	have	an	estimate	for	the	proportion	still	susceptible,
we	connect	it	to	the	parameter	R0	using	the	equilibrium	value	formula	for	S*.	In	general	our
procedure	is	as	follows:

1.	 Confirm	that	the	disease	is	in	equilibrium.	This	would	include	confirming	that	there	is	no
ongoing	epidemic	and	that	the	disease	has	been	present	in	the	population	for	a	long	time.	If
the	disease	is	an	ongoing	epidemic,	we	use	the	method	of	the	previous	section	instead.

2.	 Test	the	blood	of	a	large	enough	representative	sample	of	the	population	for	antibodies	to
the	disease.	What	qualifies	as	“large	enough”	and	“representative”	are	ideas	that	a	first
course	in	statistics	can	make	precise.

3.	 Compute	the	number	of	people	who	do	not	have	antibodies	to	the	disease	divided	by	the
total	number	tested.	This	gives	us	the	proportion	of	people	in	the	sample	who	are	still
susceptible.	If	we	have	chosen	our	sample	properly,	this	proportion	is	also	approximately
equal	to	the	proportion	of	people	who	are	still	susceptible	in	the	entire	population.	In	other
words,

4.	 Because	we	assume	that	the	disease	is	in	equilibrium,	we	have	 ,

so

.

5.	 This	last	equation	gives	us	the	link	we	need	between	real,	observable	data	and	our
mathematical	model.	To	compute	the	basic	reproductive	rate	for	a	disease	in	an	endemic
state,	we	run	blood	tests	on	a	sample	of	the	population	and	then	compute

In	the	next	example	we	illustrate	this	procedure	using	real	data	for	rubella	from	The	Gambia.



Example	4.17:

In	2000	the	World	Health	Organization	(WHO)	published	a	report	that	includes	the	results
of	serosurveys	for	rubella	in	45	developing	countries,	including	The	Gambia	(WHO,
2000).	Use	the	WHO	reported	data	to	approximate	R0	for	rubella.

From	the	serosurveys	administered	in	The	Gambia	in	1966,	1971,	and	1976,	we	know	that
at	the	time	approximately	94%	of	the	population	had	antibodies	for	rubella	in	their	blood.
Thus	6%	of	the	population	remained	susceptible,	or	0.06	as	a	proportion.	Our	work	from

before	tells	us	that	 	so	 .

We	compare	our	result	to	Table	4.2,	which	reports	that	R0	for	rubella	in	The	Gambia	in
1976	was	between	15	and	16.	The	fact	that	our	estimate	is	slightly	outside	of	the	range
reported	in	Table	4.2	could	be	due	to	rounding	in	the	WHO	serosurvey	data.	If,	for
example,	the	actual	percentage	of	those	testing	positive	for	rubella	antibodies	had	been

rounded	from	93.6%,	we	would	have	calculated	 	and	 ,	which	is	in
the	reported	range.	Another	possible	source	of	error	may	be	that	our	serosurvey	data
covers	a	10-year	period	from	1966	to	1976,	while	the	specified	R0	in	Table	4.2	is
specific	to	1976.

Recall	that	in	Section	4.2.5	we	carried	out	some	fairly	involved	algebra	to	produce	a	formula
for	the	equilibrium	value	for	S.	This	section	shows	us	the	payoff.	Our	equilibrium	analysis	in
combination	with	blood	tests	done	in	the	field	provides	us	with	a	useful	way	of	determining	R0
from	data	for	endemic	diseases.

4.3.3	Ebola	Virus	Disease
Ebola	virus	disease	(EVD)	is	a	severe	infectious	disease	that	is	transmitted	through	contact
with	an	infected	person’s	bodily	fluids.	Cases	have	been	reported	in	countries	all	over	the
world,	though	most	recent	cases	have	occurred	in	West	Africa.	Symptoms	of	EVD	include
fever,	fatigue,	muscle	pain,	and	headache.	As	the	disease	progresses,	muscle	and	abdominal
pain,	diarrhea,	vomiting,	and	unexplained	hemorrhaging	can	also	occur	(CDC,	2014).	Ebola	is
fatal	in	approximately	50%	of	cases	on	average,	though	fatality	rates	between	25	and	90%
have	been	observed	in	past	outbreaks	(WHO,	2015).

In	March	2014	the	largest	Ebola	epidemic	in	history	began	in	Guinea	in	West	Africa.	Within	2
months	of	the	outbreak,	epidemics	also	began	in	bordering	nations	Sierra	Leone	and	Liberia.
According	to	the	CDC’s	Ebola	update	on	January	30,	2015,	these	three	countries	have	seen	a
combined	total	of	22,124	cases	and	8,829	fatalities	(CDC,	2015b).	The	January	30	update	also
reported	some	hopeful	news:	it	was	the	first	week	since	June	29,	2014,	that	there	were	fewer
than	100	reported	new	cases	of	EVD	in	the	three	countries	combined.



Prevention	and	control	measures	include	reducing	wildlife	to	human	transmission	through	the
proper	cooking	of	meat,	reduction	of	human	to	human	transmission	via	separating	healthy	from
infected,	the	wearing	of	gloves	while	treating	infected,	hand	washing	after	contact,	and	quick
and	safe	burial	of	the	deceased.	While	two	potential	vaccines	are	currently	being	tested	for
safety	in	humans,	no	approved	vaccines	are	available	yet	(WHO,	2015).

Currently	the	only	treatments	are	the	treatment	of	specific	symptoms	and	administering	of	fluids
to	keep	the	patient	hydrated.	Other	potential	treatments	are	in	development	(WHO,	2015).
Once	an	infective	recovers,	immunity	to	EVD	is	known	to	last	at	least	10	years,	possibly
longer	or	for	life	(CDC,	2014).

The	first	case	of	EVD	ever	diagnosed	in	the	United	States	was	on	September	26,	2014,	in
Dallas,	Texas.	Nineteen	days	later	there	were	two	more	cases—two	nurses	who	tended	to	the
first	victim.	In	what	follows	we	apply	the	S–I–R	model	with	vital	dynamics	to	predict	what
could	have	happened	in	Dallas	if	nothing	were	done.

We	must	keep	in	mind	that	our	model	is	based	on	assumptions	that	are	unrealistic	for	a	city	like
Dallas—the	population	is	not	closed,	nor	is	it	well	mixed.	Ebola	is	also	not	particularly	well
modeled	by	the	S–I–R	model	because	it	has	a	long	incubation	period,	the	time	from	infection
to	when	symptoms	develop.	For	Ebola	humans	are	not	infectious	until	symptoms	develop,	and
the	incubation	period	can	range	between	2	and	21	days.	The	S–I–R	model	does	not	take	this
into	account,	but	the	reader	is	asked	to	modify	the	S–I–R	model	to	include	an	incubation	period
in	the	exercises.

Despite	all	of	these	objections,	we	can	still	derive	some	interesting	results	by	using	the	S–I–R
model	with	vital	dynamics	to	explore	“what-if”	questions	about	Ebola	in	the	United	States.

Those	who	have	contracted	EVD	are	contagious	as	soon	as	symptoms	appear.	Estimates	for	the
duration	of	infectivity	for	EVD	vary	depending	on	the	effected	country.	This	variation	is	due	in
part	to	different	burial	practices.	Patients	who	die	from	EVD	are	still	contagious	after	they	die,
and	in	countries	where	burial	rituals	involve	close	contact	with	the	deceased,	the	duration	of
infectivity	extends	beyond	death.	Common	estimates	for	the	duration	are	between	6	and	10
days,	and	because	we	are	dealing	with	a	potential	outbreak	in	the	United	States,	we	expect	the
duration	to	be	on	the	low	end	of	this	range.	Thus	we	let	the	duration	be	 	days.	In	our	next
example	we	determine	R0.



Example	4.18:

Determine	R0	for	the	spread	of	EVD	in	Dallas,	Texas.

We	treat	the	Dallas	cases	as	an	ongoing	epidemic	where	 	and	 .	As	in
Section	4.3.1,	we	assume	that	the	number	of	infectives	grows	exponentially	at	the
beginning	of	an	epidemic.	This	allows	us	to	estimate	the	growth	rate,	r.	We	have

Once	we	know	r,	we	can	find	R0	from	the	formula

Note	that	this	is	a	very	low	value	for	R0.	It	tells	us	that	in	the	United	States	where	virtually
everyone	is	susceptible	to	the	disease,	a	single	infective	would	cause	about	1.2	new	cases
of	Ebola	on	average.	This	number	is	reasonable	compared	to	estimates	for	R0	that	range
from	1.5	to	2.5	from	past	epidemics	depending	on	the	affected	country.	Our	value	also
lends	support	to	the	notion	that	with	proper	treatment	and	control	methods,	Ebola	is
actually	a	relatively	easy	disease	to	control	compared	to	a	disease	like	measles	whose	R0
is	12–18.

In	the	next	example	we	determine	the	remaining	required	parameters	and	model	the	course	of
an	uncontrolled	outbreak	of	Ebola	in	Dallas.

Example	4.19:

Use	the	S–I–R	model	with	vital	dynamics	to	predict	the	course	of	an	uncontrolled
outbreak	of	EVD	in	Dallas.

We	can	deduce	β	from	R0,	but	first	we	need	to	find	μ.	Based	on	data	from	the	Institute	for
Health	Metrics	and	Evaluation	(IHME),	a	reasonable	value	for	the	daily	birth	and	death
rate	in	Dallas	County,	Texas,	is	 	(IHME,	2010).

For	β	we	use	the	model’s	equation	for	R0	to	get



Thus	 .	Finally	we	find	N,	the	population	of	Dallas,	which	according	the	most
recent	US	Census	is	about	 	(U.S.	Census,	2010).

With	all	of	our	parameters	in	place,	plug	them	into	our	Excel	model	and	run	our
projection.	We	present	a	graph	of	the	projected	epidemic	in	Figure	4.17.

FIGURE	4.17	Dallas,	Texas,	projected	uncontrolled	Ebola	epidemic.

The	peak	of	the	initial	epidemic	occurs	on	day	312	with	21,676	people	sick,	and	the
initial	epidemic	ends	after	about	630	days.

As	we	mentioned	at	the	beginning	of	this	section,	we	should	be	skeptical	about	the	validity	of
the	results	from	the	last	example.	Though	the	example	is	an	interesting	exercise,	the	simplifying
assumptions	we	made	in	developing	our	S–I–R	models	in	general	will	not	be	satisfied	in	an
Ebola	epidemic.

4.3.4	Section	Exercises

1.	 Suppose	a	mysterious	flu-like	illness	is	spreading	on	a	college	campus	of	20,000	students.
Originally	only	1	student	was	infective,	but	by	the	time	school	officials	became	concerned



1	week	later	there	were	50	cases.	If	the	duration	of	infectivity	for	the	disease	is	known	to
be	5	days	and	 ,	determine	R0	for	the	disease.

2.	 Continuing	Exercise	1,	determine	the	effective	contact	rate,	β,	for	the	new	disease.

3.	 Consider	a	disease	like	measles	that	has	a	very	high	R0.	Using	Table	4.2,	in	this	case
assume	that	 	and	 .	Estimate	the	growth	rate	of	the	number	of	infectives	at	the
beginning	of	a	measles	epidemic.

4.	 Suppose	that	pertussis	is	endemic	to	a	population	where	 	and	that	there	is	no
ongoing	epidemic.	A	serosurvey	for	antibodies	to	pertussis	is	administered	to	a
representative	sample	of	4514	members	of	the	population.	Of	the	4514	surveyed,	4190
tested	positive	for	antibodies.	Estimate	R0	for	pertussis	in	this	population.

5.	 Continuing	Exercise	4,	determine	the	effective	contact	rate,	β,	for	pertussis	in	this
population.	Use	Table	4.2	to	estimate	the	duration	of	infectivity.

6.	 Project	the	course	of	an	uncontrolled	outbreak	of	Ebola	in	your	own	hometown	if	originally
one	person	was	infected.

7.	 Extension:	One	reason	the	S–I–R	model	with	vital	dynamics	is	not	the	most	appropriate
model	for	Ebola	is	that	EVD	has	a	considerable	incubation	period	(~10	days)	during	which
time	the	person	who	has	the	disease	is	asymptomatic	and	cannot	transmit	it.	A	better	choice
of	model	would	be	an	S–E–I–R	model	with	vital	dynamics,	where	we	add	a	category	for
those	who	are	exposed	but	not	yet	infectious.

a.	 Draw	a	careful	flow	diagram	for	an	S–E–I–R	model	with	vital	dynamics.

b.	 Give	the	DDS	for	the	model.

c.	 Implement	the	model	in	Excel.

d.	 How	does	the	course	of	the	potential	epidemic	in	Dallas	change	when	modeled	by	the
S–E–I–R	model	with	vital	dynamics?

4.4	S–I–R	WITH	VITAL	DYNAMICS	AND	ROUTINE
VACCINATIONS
For	the	basic	S–I–R	model,	vaccinations	have	the	effect	of	moving	a	susceptible	person
straight	into	the	removed	compartment.	Because	there	were	no	vital	dynamics	in	that	model,
our	vaccination	was	simply	a	“one-time	campaign”	that	we	assumed	occurred	before	the	onset
of	the	epidemic.	With	the	inclusion	of	a	constant	supply	of	new	births,	our	vaccination	program
can	be	made	more	realistic	since	we	now	think	of	vaccinations	of	newborns	on	a	routine	or
ongoing	basis	as	they	enter	the	susceptible	population.

The	inclusion	of	a	routine	vaccination	program	changes	the	dynamics	of	our	model	as	well	as
its	equilibrium	points.	To	introduce	the	vaccination	of	newborns,	we	let	ρ	(a	Greek	lowercase
rho)	denote	the	proportion	of	newborns	who	are	vaccinated.	Instead	of	heading	into	the



susceptible	compartment,	newborns	who	are	vaccinated	move	directly	into	the	removed
compartment.

Since	the	number	of	new	births	each	day	is	given	by	μN,	each	day	vaccinations	are	sending
ρμN	newborns	directly	into	R.	The	remainder	 	enter	S.	We	incorporate
these	observations	into	the	flow	diagram	in	Figure	4.18.

FIGURE	4.18	Flow	diagram	for	S–I–R	with	vital	dynamics	and	ongoing	vaccinations.

Our	discrete	dynamical	system	changes	accordingly	to	become

Next	we	provide	a	computational	example	that	lends	support	to	the	Herd	Immunity	Theorem.

Example	4.20:

Recall	the	chicken	pox	epidemic	from	Example	4.6.	Determine	the	newborn	vaccination
proportion	required	to	eventually	eradicate	the	disease;	confirm	the	result	with	Excel.

Our	parameter	assumptions	from	Example	4.6	were	 ,	 ,	 ,	 ,
and	 .	To	find	the	vaccination	proportion,	we	first	must	find	R0.	Because	the
model	includes	vital	dynamics,	we	find



According	to	the	Herd	Immunity	Theorem,	the	proportion	of	newborns	we	need	to

vaccinate	must	be	at	least	 .

Next	we	test	this	result	with	Excel.	Including	the	vaccination	proportion	as	its	own
parameter,	we	need	to	update	the	formulas	for	the	susceptible	and	removed	compartments.
Figure	4.19	shows	the	setup	with	the	formula	for	the	removed	category	displayed.

FIGURE	4.19	Excel	S–I–R	with	vital	dynamics	and	vaccinations	setup.

One	final	modification	we	make	is	to	account	for	vaccinations	having	been	ongoing	before
the	start	of	the	epidemic.	Thus	we	assume	that	before	the	onset	of	the	chicken	pox
epidemic,	only	11%	of	the	5000	in	the	population	was	susceptible.	As	a	result	we	start
with	 ,	and	 .	With	the
vaccination	proportion	set	at	 ,	we	get	the	graph	for	the	epidemic	shown	in	Figure
4.20.



FIGURE	4.20	Chicken	pox	with	vaccination	proportion	from	Herd	Immunity	Theorem.

Note	that	the	infectives	decrease	from	the	outset	and	tend	to	0.	We	leave	it	to	the	reader	to
check	that	if	we	set	the	vaccination	proportion	to	0.88	instead,	it	is	not	quite	enough,	and
the	number	of	infectives	will	increase	at	the	outset.

In	the	next	section	we	show	that	the	inclusion	of	ongoing	vaccinations	does	not	change	the
formula	for	computing	the	basic	reproductive	rate.

4.4.1	The	Basic	Reproductive	Rate
Since	we	have	a	new	model,	we	need	to	determine	R0	from	the	model	parameters.	We	rely	on
the	same	general	observation	as	before:

We	note	that	the	inclusion	of	a	vaccination	program	has	left	the	infective	compartment
unchanged	in	our	flow	diagram	and	DDS.	Hence	the	average	time	spent	in	I	is	the	same	as
before,	and	so	is	the	expression	for	R0,	namely,

As	we	see	in	the	next	section,	it	is	a	different	story	for	equilibrium	points:	vaccinations	do
change	them.



4.4.2	Equilibrium	Points
As	before,	finding	the	equilibrium	points	amounts	to	solving	the	system	of	equations

for	S*,	I*,	and	R*.

We	note	that	as	a	first	simplification,	we	have

Note	again	that	the	I*-equation	is	unchanged	by	the	vaccination	program;	this	means	that	the
algebra	begins	just	as	it	did	for	the	vital	dynamics	model.	Rather	than	repeat	it	here,	we	refer
to	that	earlier	work	and	note	that	if	we	start	with	the	I*-equation,	we	will	find	two	cases.

Either	 	or	 .

Suppose	 .	Direct	substitution	of	 	into	the	S*-equation	and	R*-equation	yields	the
equilibrium	point

This	point	indicates	that	when	no	disease	is	present,	the	population	will	be	split	into	the	two
compartments,	S	and	R,	with	S	containing	the	unvaccinated	individuals	and	R	containing	the
vaccinated.	Note	that	we	get	the	expected	proportion	in	each	compartment	based	on	our
vaccination	coverage.

Next	suppose	 .	To	find	I*	we	substitute	 	into	the	S*-equation,	

.	We	get



Thus	we	have

Finally,	we	find	R*	by	substituting	 	into	the	R*-equation,	

.	We	find

Thus	we	have

Note	that	if	 	is	small	enough,	that	is,	if	ρ	is	close	enough	to	1,	then	the	equilibrium	value
for	I	can	be	negative.	This	of	course	makes	no	physical	sense.	Under	such	conditions	the
number	of	infectives	will	be	understood	to	be	0,	and	the	disease	will	be	eradicated.

So	far	in	our	work,	we	have	taken	for	granted	that	we	ought	to	be	vaccinating,	and	our	main
concern	has	been	how	many	we	should	vaccinate.	In	the	next	section	we	see	that	under	some
circumstances	vaccinations	may	not	be	the	right	course	of	action.

4.4.3	Life	Expectancy	and	Average	Age	at	Infection:	A	Complication
for	Vaccination	Programs



For	some	diseases	the	health	consequences	of	infection	depend	on	the	age	at	which	an
individual	contracts	the	disease.	This	age	dependence	must	be	taken	into	account	when
deciding	on	a	vaccination	program	because	an	unintended	consequence	of	such	programs	is
that	they	tend	to	raise	the	average	age	at	which	people	contract	the	disease	(Nelson	B.,	2005).
In	this	section	we	use	our	ongoing	vaccination	model	to	examine	the	mathematical
consequences	of	such	a	program	on	the	age	at	infection.

When	people	enter	the	susceptible	category	at	birth,	the	age	at	which	they	become	infected	is
the	amount	of	time	they	spend	in	the	susceptible	compartment.	Thus	by	average	age	at
infection,	we	mean	the	average	amount	of	time	someone	spends	in	the	susceptible
compartment.	To	compute	a	sensible	estimate	for	this	age,	we	must	first	assume	that	the	disease
is	in	equilibrium	as	we	did	when	finding	R0	from	serosurveys.

Since	we	aim	to	find	the	average	time	someone	spends	in	the	susceptible	compartment,	we
apply	the	Waiting	Time	Principle	once	again.	To	do	so	we	must	first	find	the	proportion	of
susceptibles	who	leave	the	compartment	each	day.	Once	we	do	that,	the	waiting	time	is
straightforward	to	compute.	From	the	flow	diagram	in	Figure	4.18,	we	know	that	the	total
number	of	susceptibles	who	leave	the	compartment	each	day	is	the	sum	of	those	who	become
infective	and	those	who	die.	This	total	is	given	by

It	is	tempting	to	say	that	the	proportion	of	susceptibles	who	leave	each	day	is	therefore	given

by	 .	The	trouble	with	this	approach	is	that	the	quantity	I	changes	over	time,	but	we
need	a	single	value	for	the	proportion.	We	get	around	this	obstacle	by	assuming	that	the	disease
has	been	present	in	the	population	long	enough	to	be	in	equilibrium.	Thus	we	use

as	our	single	fixed	value	for	I.	As	long	as	we	are	at	equilibrium,	the	proportion	of	susceptibles
removed	from	S	each	day	will	therefore	be	equal	to

Finally,	we	appeal	to	the	Waiting	Time	Principle	and	compute	the	average	age	at	infection,
which	we	denote	by	A:



We	observe	that	the	average	age	at	infection	depends	on	several	factors:	the	population’s
natural	death	rate,	the	ease	with	which	the	disease	can	spread,	and	the	proportion	of	newborns
who	are	routinely	vaccinated.

Considering	our	formula	for	A,	we	can	go	a	step	further	and	note	that	μ	can	be	thought	of	as	the
removal	rate	from	the	entire	population.	Thus	by	the	Waiting	Time	Principle,	the	reciprocal	of
μ	is	equal	to	the	average	length	of	time	that	someone	spends	in	the	population.	Put	another	way,
the	reciprocal	of	μ	represents	the	average	life	expectancy,	which	we	denote	by	L,	of	someone
in	the	population.	We	capture	this	relationship	as

and	we	note	that	this	is	the	relationship	used	to	estimate	μ	for	the	Ebola	example	in	the
previous	section.	We	can	also	use	this	relationship	to	rewrite	our	expression	for	the	average
age	at	infection	as

As	mentioned	previously	the	average	age	of	infection	depends	on	the	vaccination	proportion,
ρ.	Since	 	appears	in	the	denominator,	the	higher	the	vaccination	proportion,	the	closer	

	will	be	to	0	and	thus	the	higher	the	age	at	infection	will	be.	That	is,	the	more	people	we
vaccinate,	the	older	people	will	typically	be	when	they	contract	the	disease.	The	trouble	with
this	is	that	some	diseases	are	much	more	serious	when	contracted	later	in	life.	In	such	cases	a
vaccination	program	can	actually	increase	the	chances	for	serious	complications	from	a
disease.

In	the	next	section	we	consider	a	disease	for	which	the	age	at	infection	is	a	crucial	factor	when
considering	a	vaccination	program.

4.4.4	Rubella	and	Congenital	Rubella	Syndrome	in	The	Gambia
In	the	United	States	it	is	recommended	that	all	children	be	given	the	mumps,	measles,	and
rubella	(MMR)	vaccine—the	first	dose	at	age	12–15	months	and	the	second	dose	at	age	4–6
years	(CDC,	2012).	Rubella,	also	known	as	German	measles,	is	particularly	interesting
because	it	is	an	example	of	a	disease	whose	seriousness	depends	on	when	it	is	contracted.
Rubella	is	generally	a	fairly	mild	disease	with	one	important	exception.	If	a	pregnant	woman
contracts	the	disease	during	the	first	trimester	of	pregnancy,	there	is	an	80%	chance	that	her
baby	will	be	born	with	congenital	rubella	syndrome	(CRS).	Complications	for	infants	with
CRS	include	cataracts,	mental	retardation,	deafness,	and	cardiac	defects	(Anderson	&	May,
1991).	We	now	use	our	vaccination	model	to	analyze	the	effect	that	a	Rubella	immunization
program	aimed	at	newborns	might	have	in	The	Gambia.



First	we	must	find	values	for	all	of	the	model	parameters.	We	have	from	serosurvey	data	(see
Example	4.17)	that	 ,	and	from	Table	4.2	we	may	take	the	duration	of	infectivity	to
be	 	days.	The	life	expectancy,	L,	for	The	Gambia	is	difficult	to	know	precisely.	Various
estimates	place	it	at	45–55	years.	We	will	use	 	days.

Currently	there	is	not	a	routine	vaccination	program	for	rubella	in	The	Gambia.	Should	there
be?

With	no	vaccinations	our	model	predicts	that	the	average	age	at	infection	for	rubella	in	The

Gambia	is	about	 	days,	that	is,	3	years	old.	This	estimate	agrees
with	the	one	given	in	Anderson	and	May	of	2–3	years	(Anderson	&	May,	1991).	Thus	in	The
Gambia	where	there	is	no	vaccination	program	and	virtually	everyone	gets	rubella,	there	are
very	few	complications	due	to	CRS	because	almost	all	women	of	childbearing	age	have
already	had	the	disease.

We	contrast	this	with	what	would	happen	under	a	routine	newborn	vaccination	program.
Suppose	we	were	able	to	successfully	vaccinate	80–85%	of	all	infants	in	The	Gambia.	Then

our	new	average	age	at	infection	would	be	between	 	and	

	days,	or	between	15	and	20	years	old.

Now	we	can	see	the	problem	with	vaccinations	here.	By	vaccinating	infants	we	will	succeed
in	dramatically	reducing	the	number	of	cases	of	rubella;	however,	those	who	do	contract	the
disease	will	now	be	between	15	and	20	years	old.	The	new,	higher	age	at	infection	means	that
while	we	decrease	the	total	cases	of	rubella,	we	may	simultaneously	increase	the	number	of
the	most	serious	cases—pregnant	women	who	pass	CRS	to	their	babies.	Thus	vaccinating
infants	against	rubella	in	The	Gambia	might	very	well	be	a	bad	idea—a	result	that	is	certainly
not	obvious	at	the	outset.

This	last	example	highlights	the	power	of	mathematical	modeling.	Even	though	the	S–I–R
model	and	its	variants	may	not	be	accurate	for	predictions	involving	large	populations	or	long
time	periods,	they	can	still	play	an	important	role	by	highlighting	issues	to	consider	before
taking	action.

4.4.5	Section	Exercises

1.	 According	to	the	World	Health	Organization,	vaccination	coverage	for	measles	in	the
United	States	was	91.9%	in	2014.	Using	values	for	R0	from	Table	4.2	and	life	expectancy
estimates	from	an	Internet	source,	estimate	the	average	age	at	infection	for	measles	in	the
United	States.

2.	 According	to	the	World	Health	Organization,	vaccination	coverage	for	pertussis	in	Nigeria
was	41%	in	2012.	Using	values	for	R0	from	Table	4.2	and	life	expectancy	estimates	from
an	Internet	source,	estimate	the	average	age	at	infection	for	pertussis	in	Nigeria.

3.	 Our	minimum	vaccination	coverage	required	to	prevent	an	epidemic	has	been	based	on	the



Herd	Immunity	Theorem.	A	second	way	to	think	of	disease	eradication	would	be	to
vaccinate	enough	people	so	that	the	long-term	value	for	the	number	of	infectives	equals	0.
In	other	words,	we	could	vaccinate	so	that	 .	Show	that	the	vaccination	level	implied
by	this	requirement	turns	out	to	be	the	same	as	that	given	in	the	Herd	Immunity	Theorem.

4.	 Another	way	to	approach	the	idea	of	disease	eradication	is	to	vaccinate	enough	people	that
the	average	age	at	infection	is	greater	than	the	life	expectancy	of	the	population.	Show	that
the	vaccination	level	produced	by	this	approach	is	the	same	as	that	given	by	the	Herd
Immunity	Theorem.

5.	 Extension:	A	reason	that	we	do	not	actually	vaccinate	newborns	in	practice	is	that
newborns	are	temporarily	protected	from	many	diseases	by	antibodies	that	are	passed	on
from	the	mother.	This	phenomenon	is	known	as	maternal	antibody	protection,	and	if	a
vaccine	is	administered	too	soon	after	birth,	maternal	antibodies	can	interfere	with	the
vaccine	working	properly.	Suppose	that	maternal	antibody	protection	lasts	90	days.	Modify
the	S–I–R	model	with	vital	dynamics	and	routine	vaccinations	to	include	a	compartment,
M,	for	maternal	antibody	protection.

a.	 Give	a	flow	diagram	for	the	M–S–I–R	model	with	vital	dynamics	and	routine
vaccinations.

b.	 Give	the	DDS	for	the	model.

c.	 Implement	the	model	in	Excel.



5	
DENSITY-DEPENDENT	POPULATION	MODELS
If	we	project	exponential	population	growth	far	enough	into	the	future,	it	eventually	becomes
unrealistic	because	the	population	continues	to	grow	without	bound.	We	do	not	really	expect
the	Yellowstone	grizzly	population	to	reach,	say,	a	billion	bears;	yet,	if	we	rely	uncritically	on
our	exponential	model,	eventually	that	is	what	we	will	see.

Real	populations	seldom	exhibit	exponential	growth	for	long.	Certainly	there	are	many
examples	where	populations	do	grow	exponentially	for	a	time,	but	both	experience	and
common	sense	tell	us	that	eventually	the	growth	must	taper	off.	As	overcrowding	develops,
resources	like	food,	water,	and	shelter	become	more	and	more	scarce,	diseases	spread	more
easily,	and	as	a	consequence	it	becomes	more	difficult	for	the	population	to	continue	growing.
Models	that	take	these	growth-limiting	effects	into	account	are	said	to	be	density	dependent.

5.1	THE	DISCRETE	LOGISTIC	MODEL
We	begin	by	assuming	that	for	any	population	there	is	a	maximum	number	that	a	given
environment	can	support.	This	maximum	number	is	called	the	carrying	capacity,	and	we
follow	convention	by	denoting	this	number	by	K.	We	should	note	that	the	carrying	capacity
depends	both	on	the	particular	species	and	on	the	particular	environment	in	which	it	is	found.
A	small	pond,	for	example,	will	have	a	smaller	carrying	capacity	for	goldfish	than	a	large	lake
—it	is	not	just	the	goldfish	themselves	that	determine	the	carrying	capacity.	Similarly,	a	lake
will	have	a	larger	carrying	capacity	for	minnows	than	for	catfish.

Our	task	in	this	section	is	to	build	a	DDS	that	models	a	population	when	we	know	its	growth	is
limited	by	the	carrying	capacity	of	its	environment.	Before	we	attempt	to	write	down	the	DDS,
we	give	some	thought	to	the	features	that	such	a	model	should	have.

The	notion	of	a	carrying	capacity	implies	that:

1.	 The	growth	rate	of	the	population	should	decline	as	the	population	nears	the	carrying
capacity.

2.	 The	growth	rate	should	be	0	if	the	population	reaches	the	carrying	capacity.

In	the	nineteenth	century	Pierre	Verhulst	was	the	first	to	formulate	such	a	model	(Verhulst,
1838).	Here	we	present	the	discrete	version	of	Verhulst’s	model:	the	discrete	logistic	growth
model.

Recall	that	the	DDS	for	exponential	growth	is	given	by	 ,	where	the
growth	rate	r	is	assumed	to	be	the	same	regardless	of	how	large	or	small	the	population	is.	The
idea	in	Verhulst’s	model	is	to	replace	the	fixed	growth	rate,	r,	with	an	expression	that	varies	in
accordance	with	properties	1	and	2	above.



Consider	the	basic	exponential	growth	model	where	r	does	not	depend	on	the	population.	Then
the	graph	of	the	growth	rate	versus	population	should	appear	as	in	Figure	5.1.	Note	that	the
graph	for	r	is	a	horizontal	line	because	the	growth	rate	remains	constant	regardless	of	how
large	the	population	is.

FIGURE	5.1	Growth	rate	versus	population	for	exponential	model.

A	more	realistic	graph	would	show	a	decline	in	the	growth	rate	with	increasing	population	to
reflect	the	effects	of	overcrowding,	and	it	would	indicate	a	growth	rate	of	zero	if	the
population	reaches	the	carrying	capacity,	K.	The	simplest	such	graph	is	given	in	Figure	5.2:	a
straight	line	that	starts	with	a	maximum	growth	rate	of	r	and	decreases	to	a	growth	rate	of	0	at
the	carrying	capacity.



FIGURE	5.2	Growth	rate	versus	population	for	discrete	logistic	model.

The	graph	is	an	important	step,	but	to	accomplish	our	ultimate	goal	of	a	DDS	for	logistic
growth,	we	need	to	find	the	equation	of	this	straight	line:	the	line	that	connects	the	points	
and	 .	To	do	so	we	recall	the	slope–intercept	form	of	a	line:	 ,	where	m	is	the

slope	of	the	line	and	b	is	the	y-intercept.	The	formula	for	finding	the	slope	is	 ,
where	 	and	 	are	any	two	points	on	the	line.	Using	the	only	two	points	we	know,

we	find	 .

We	already	know	where	the	line	crosses	the	y-axis,	namely,	at	 .	Finally,	we	can	write
down	the	equation	of	the	line	that	represents	our	varying	growth	rate:

which	we	can	also	write	as	 .	Remembering	that	x	represents	population
and	y	the	growth	rate,	we	arrive	at	the	formula



To	distinguish	the	constant	r	from	our	varying	growth	rate	formula,	we	now	refer	to	r	as	the
intrinsic	growth	rate	of	the	population.	This	is	the	maximum	possible	growth	rate	the
population	would	experience	under	ideal	conditions.	With	our	new,	more	realistic	notion	of	a
varying	growth	rate	in	place,	we	can	write	down	the	DDS	for	logistic	growth:

It	is	worth	comparing	this	new	DDS	to	the	exponential	growth	model.	The	logistic	model	still
says	that	“to	get	from	1	year’s	population	to	the	next,	add	a	percentage	of	the	previous
population.”	The	important	difference	is	that	the	percentage	now	depends	on	how	large	the
population	is	relative	to	the	environment’s	carrying	capacity.

Next	we	apply	the	discrete	logistic	model	to	the	population	of	Antarctic	baleen	whales.

5.1.1	Antarctic	Baleen	Whales
Baleen	whales,	also	known	as	great	whales,	are	whales	that	feed	by	filtering	food	through
baleen	plates	in	their	upper	jaw.	Examples	of	baleen	whales	are	the	blue	whale,	fin	whale,	and
sei	whale.	Due	to	overfishing,	baleen	whale	populations	in	the	Antarctic	declined	to
dangerously	low	levels	in	the	mid-1900s.	On	December	2,	1946,	the	International	Whaling
Commission	(IWC)	was	formed	to

provide	for	the	proper	conservation	of	whale	stocks	and	thus	make	possible	the	orderly
development	of	the	whaling	industry,	provide	for	the	complete	protection	of	certain	species;
designate	specified	areas	as	whale	sanctuaries;	set	limits	on	the	numbers	and	size	of	whales
which	may	be	taken;	prescribe	open	and	closed	seasons	and	areas	for	whaling;	and	prohibit
the	capture	of	suckling	calves	and	female	whales	accompanied	by	calves.

(International	Whaling	Commission,	n.d.)

Prior	to	1963	the	IWC	used	the	blue	whale	unit	(BWU)	as	its	unit	in	setting	whale	quotas
(Clark,	1985).	In	these	units	we	have	1	blue	whale = 1	BWU,	1	fin	whale = 1/2	BWU,	and	1	sei
whale = 1/6	BWU.	In	retrospect	the	IWC’s	choice	of	units	was	a	regrettable	one	as	it	was	not
specific	enough	to	protect	any	particular	species	and	led	to	the	further	depletion	of	baleen
whales	by	overfishing.

Based	on	IWC	estimates	we	adopt	an	initial	population	in	1985	of	75,000	BWU,	an	intrinsic
growth	rate	of	 ,	and	a	carrying	capacity	of	 	BWU	for	the	Antarctic	baleen
whale	fishery	(Clark,	1985).	It	is	worth	taking	a	few	moments	to	understand	the	units	here.
Saying	that	the	carrying	capacity	is	400,000	BWU	means	that	the	environment	could	support	as
many	as	400,000	blue	whales,	or	800,000	fin	whales,	or	2,400,000	sei	whales,	or	any
combination	of	the	three	species	that	does	not	exceed	the	400,000	BWU	threshold.

We	begin	with	a	computational	example.



Example	5.1:

Assume	that	in	1985	population	we	have	 ,	 ,	and	 .	What
would	the	discrete	logistic	growth	model	predict	for	the	2015	abundance	of	baleen
whales	in	the	Antarctic	fishery?

This	problem	is	a	straightforward	application	of	the	discrete	logistic	model.	The	main
difficulty	will	be	typing	in	the	formula	correctly	into	Excel.	Recall	that	the	DDS	for	this
model	is

We	store	all	parameters	in	their	own	cells	and	then	refer	to	them	using	absolute
addressing.	We	show	the	Excel	setup	with	the	population	formula	displayed	in	Figure	5.3.

FIGURE	5.3	Discrete	logistic	Excel	model	setup.

Once	we	have	entered	the	formula,	we	copy	it	down	to	year	30	(2015)	and	observe	the
results	shown	in	Figure	5.4	with	most	rows	hidden.



FIGURE	5.4	Discrete	logistic	Excel	model	output	for	Example	5.1.

We	see	that	the	model	predicts	a	population	of	202,120	BWU	for	2015.	Notice	that	even
after	30	years	(assuming	no	harvesting),	the	baleen	whale	population	is	still	well	below
its	carrying	capacity.	This	example	illustrates	that	great	whale	populations	are	in	general
very	slow	to	recover	from	overfishing.

In	the	next	example	we	consider	how	long	it	would	take	for	the	baleen	whale	population	to
grow	to	near	its	carrying	capacity.



Example	5.2:

How	long	under	the	conditions	in	Example	5.1	would	it	take	the	baleen	whale	population
to	reach	390,000	BWU?

This	question	can	be	answered	by	copying	our	formulas	down	far	enough.	Based	on	our
model	projections,	it	would	take	approximately	102	years—over	a	century—for	the
whales	to	recover	to	near	their	carrying	capacity,	even	with	full	protection	from	the	IWC.
A	graph	of	the	population	over	this	time	period	is	presented	in	Figure	5.5.

Notice	the	S	shape	of	the	graph;	this	is	the	characteristic	shape	of	logistic	growth.
Observing	this	shape	in	a	graph	of	data	is	often	a	clue	that	a	logistic	model	is	an
appropriate	one	to	try.

FIGURE	5.5	Model	predictions	for	baleen	whale	population	from	Example	5.2.

5.1.2	Equilibrium	Values
Recall	that	an	equilibrium	value	for	a	population	is	a	value	 	where	the	model	does	not
change.	In	the	next	example	we	find	the	equilibrium	values	for	the	discrete	logistic	model.



Example	5.3:

Using	the	same	parameters	as	in	Example	5.1,	find	the	equilibrium	values	for	the	baleen
whale	model.

We	need	to	find	values	 	such	that

Subtracting	 	from	both	sides	gives	us

When	a	product	of	real	numbers	is	equal	to	0,	at	least	one	of	the	factors	must	equal	0.

Thus	we	must	have	either	 	or	 .	Solving	the	second	equation	gives
us	 .	What	we	have	shown	is	that	the	population	will	be	at	equilibrium	if	it
becomes	extinct	or	if	it	reaches	its	carrying	capacity.

The	results	from	Example	5.3	are	not	a	special	case.	For	the	discrete	logistic	model,	we
always	have	two	equilibria:	extinction	and	carrying	capacity,	a	fact	the	reader	is	invited	to
verify	in	the	exercises.

As	we	will	see	later	in	this	chapter,	it	is	not	possible	to	make	a	general	claim	about	the
stability	of	the	equilibrium	values	for	the	discrete	logistic	model	because	the	stability	of	the
equilibrium	values	actually	depends	on	the	parameter	values.	We	can,	however,	determine	the
stability	of	the	equilibrium	values	for	particular	cases	using	Excel	as	we	did	in	Chapter	1.
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Example	5.4:

Determine	the	stability	of	the	equilibrium	values	from	Example	5.3.

Recall	that	a	stable	equilibrium	value	is	one	where	if	the	population	starts	off	of	the
equilibrium,	the	population	will	tend	back	toward	it.	On	the	other	hand,	an	unstable
equilibrium	is	one	where	if	the	population	starts	off	of	it,	the	population	will	tend	to	get
further	away	from	it.	By	using	Excel	to	graph	population	projections	for	several	different
initial	populations	on	the	same	graph,	we	can	determine	the	stability	of	an	equilibrium
value	by	observing	the	behavior	of	the	populations.	(See	Section	1.5.2	for	a	refresher	on
stability	and	how	to	create	an	Excel	graph	to	test	for	it.)	We	produce	such	a	graph	in
Figure	5.6.

FIGURE	5.6	Determining	stability	of	equilibria	for	baleen	whale	population.

First	note	that	the	constant	populations	at	 	and	 	confirm	that	we	do
indeed	have	equilibrium	values	at	those	points.	Also	note	that	populations	just	above	0
tend	to	grow	away	from	0.	Thus	 	is	an	unstable	equilibrium.	On	the	other	hand,	all
other	populations	tend	toward	the	carrying	capacity,	 .	Populations	that	start
above	400,000	decline	toward	it,	and	populations	that	start	below	400,000	grow	toward
it.	Thus	the	equilibrium	value	 	is	a	stable	equilibrium.

In	the	next	section	we	provide	an	alternative	method	for	classifying	equilibria	graphically.

5.1.3	Cobweb	Diagrams
We	saw	in	Chapter	1	and	in	the	previous	section	that	we	can	determine	the	stability	of
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equilibrium	values	graphically	by	selecting	several	different	initial	populations	and	observing
whether	the	graphs	all	seem	to	approach	or	move	away	from	a	given	equilibrium.	In	this
section	we	introduce	a	new	kind	of	graph	called	a	cobweb	diagram	that	is	commonly	used	to
determine	stability.	An	advantage	of	using	a	cobweb	diagram	is	that	once	we	understand	how
to	construct	and	interpret	one,	stability	can	be	determined	simply	by	inspecting	the	graph
without	reference	to	any	particular	initial	population.
We	begin	by	considering	a	logistic	growth	model	where	the	intrinsic	growth	rate	is	
and	the	carrying	capacity	is	 .	We	know	that	the	DDS	for	the	population	is	given	by

We	define	a	function,	f,	using	the	DDS:	 .	Computing	the	population
from	one	time	to	the	next	is	equivalent	to	evaluating	our	function	f	at	x	where	x	is	the
population	at	a	given	time.	The	function	f	is	called	the	reproduction	function—given	a
population,	x,	it	computes	the	next,	 .

The	graph	of	the	reproduction	function	is	called	the	reproduction	curve,	and	it	provides	a
useful	way	of	doing	DDS	calculations	graphically.	If	we	graph	the	function	

,	we	can	evaluate	it	at	any	population	x	by	starting	at	x	on	the
horizontal	axis	and	traveling	vertically	up	to	the	graph	of	f.	Once	we	are	on	the	graph,	we
estimate	the	function	value	by	glancing	at	the	vertical	axis.	If	we	want	to	know	what	the
population	will	be	the	day	after	that,	we	take	our	current	estimate,	locate	it	on	the	x-axis,	and
again	travel	vertically	up	to	the	graph	so	we	can	estimate	the	new	population	value.	In	this	way
we	can	at	least	estimate	the	population	as	far	into	the	future	as	we	like	by	repeating	the	steps.

The	cobweb	diagram	introduces	a	clever	graphical	device	that	makes	this	process	of	graphical
iteration	much	easier.	In	fact,	it	will	allow	us	to	project	our	population	into	the	future	without
having	to	lift	our	pencil	from	the	page.	The	idea	is	to	graph	the	reproduction	function	

	along	with	the	line	 	on	the	same	axes.	We	point	out	that	an
equilibrium	value	is	a	value	 	such	that	 .	In	this	context	such	a	point	is	often
referred	to	as	a	fixed	point	of	f.	Graphically,	fixed	points	correspond	to	points	where	the	line	

	and	f	intersect.	Thus,	if	we	have	not	already	found	our	equilibrium	values,	we	can
estimate	them	easily	by	inspecting	our	new	graph.

Example	5.5:

Show	that	the	equilibrium	values	for	a	logistic	growth	model	with	intrinsic	growth	rate	
	and	carrying	capacity	 	correspond	to	the	fixed	points	of	the	reproduction

function.



Algebraically	we	compute	the	value	of	the	reproduction	function	at	each	equilibrium
point.	For	the	carrying	capacity,	we	get

For	the	equilibrium	at	zero,	we	get

In	both	cases	we	have	 .

To	approach	the	problem	graphically,	we	first	must	graph	the	reproduction	function	and
the	line	 	on	the	same	axes.

E.16	Graphing	Functions

Graphing	functions	in	Excel	requires	a	slightly	different	approach	than	graphing	a
DDS.	We	will	need	a	column	for	the	x-variable	and	a	column	for	the	function	values
or	y-variable.	For	the	x-variable,	we	need	to	decide	on	the	range	we	want	to	graph.
In	this	case	we	will	graph	x-values	from	to	.	We	also	need	to	decide	how	many	points
to	graph.	Somewhere	around	100	points	should	be	plenty	and	is	not	difficult	to	do	in
Excel.	We	want	our	points	to	be	evenly	spaced,	so	starting	at	 	we	use	all	whole
number	values	of	x	up	to	110.	The	Excel	setup	with	most	rows	hidden	and	formulas
displayed	is	given	in	Figure	5.7.



FIGURE	5.7	Graphing	functions	in	Excel	setup.

Next	we	enter	the	formula	for	 .	The	result	is	shown	in	Figure	5.8.

FIGURE	5.8	Graphing	functions	in	Excel	with	formula	for	f(x).

Note	how	the	formula	for	 	refers	to	the	x-variable	column	to	get	population
values,	rather	than	from	the	“previous	cell”	as	was	the	case	for	the	DDS.	The	last
step	before	graphing	is	to	include	a	third	column	for	the	line	 .	This	is	done	in
Figure	5.9.



FIGURE	5.9	Graphing	multiple	functions	in	Excel.

Finally	we	are	ready	to	graph.	We	select	all	three	columns,	including	the	column
headings,	and	select	a	scattergraph	with	straight	lines	but	no	markers.	The	result	is
given	in	Figure	5.10.

FIGURE	5.10	Graph	of	reproduction	function,	f(x),	with	the	line	y = x.

Note	that	the	two	intersection	points	for	the	graphs	of	the	reproduction	function	and
the	line	 	correspond	exactly	to	the	fixed	points	for	f.

We	are	now	interested	in	what	happens	to	our	population	under	repeated	iteration	of	the
function,	f.	We	begin	with	some	initial	population	 	and	note	that	the	population	the	following
year	will	be	 ,	which	corresponds	to	the	y-value	on	the	graph	of	f	above	the	point	 .

Now	we	come	to	the	clever	part	of	our	graphing	technique:	instead	of	having	to	locate	the	new
population	 	on	the	x-axis,	we	simply	move	horizontally	from	the	point	 	over	to	the



graph	of	the	line	 .	When	we	hit	the	line	 ,	we	will	be	at	a	point	whose	y-coordinate	is	
	(because	we	have	moved	horizontally)	and	hence	whose	x-coordinate	is	exactly	the

value	we	want,	namely,	 .	Now	to	find	the	next	population	 ,	we	simply	move
vertically	to	the	graph	of	f	again.	We	can	carry	out	as	many	iterations	(i.e.,	population	values)
as	we	like	simply	by	repeating	the	process	of	moving	horizontally	to	 	to	get	the	next	x-
coordinate	and	then	vertically	to	f	to	get	the	next	population.	If	this	process	brings	us	closer
and	closer	to	an	equilibrium	value,	then	that	value	is	stable.	If	it	moves	us	further	away,	the
equilibrium	is	unstable.	Occasionally	we	will	have	a	value	that	we	approach	from	one	side	but
move	away	from	on	the	other.	Such	an	equilibrium	will	be	called	semistable.

Example	5.6:

Use	a	cobweb	diagram	to	examine	the	logistic	growth	model	from	the	previous	example
where	 	and	 .

We	start	with	an	initial	population	 	and	observe	how	the	population	changes	with
each	iteration.

The	first	step	is	to	evaluate	the	function	at	the	initial	population.	When	we	do,	we	get	a

population	of	 	for	the	following	year.	The	79.2
becomes	our	new	x-value	 	to	which	we	apply	the	function	f	again.	Graphically
this	is	equivalent	to	moving	right	until	we	hit	the	line	 	and	then	moving	up	to	the
function	graph	again.	The	first	step	is	shown	in	Figure	5.11.

The	next	graph	shows	several	iterations	of	the	cobwebbing	method.	Notice	how	the	points
are	tending	toward	the	fixed	point	 	(Fig.	5.12).

The	next	graph	in	Figure	5.13	shows	the	result	of	starting	our	cobweb	at	the	initial	point	
.

Note	that	this	graph	also	shows	points	tending	toward	 .	This	indicates	that	the
fixed	point,	or	equilibrium	value,	at	100	is	stable.	At	the	same	time	we	have	shown	that
the	fixed	point	or	equilibrium	value	at	0	is	unstable	since	our	populations	are	all	tending
away	from	it.



FIGURE	5.11	Iterating	the	reproduction	function	using	cobwebbing.

FIGURE	5.12	Several	iterations	of	the	reproduction	function	using	cobwebbing.



FIGURE	5.13	Cobweb	diagram	starting	at	 .

The	steps	for	creating	cobweb	diagrams	in	Excel	are	somewhat	more	involved	than	for	our
usual	types	of	graphs.	The	interested	reader	can	find	the	details	in	Appendix	E	and	further
information	in	Gurney	(2004).

Next	we	use	cobwebbing	to	reinforce	our	work	on	a	previous	example.



Example	5.7:

Consider	again	our	affine	model	for	the	white-tailed	deer	population	in	Chapter	1.	We
assume	that	the	population	is	growing	by	26%	each	year	and	that	780,000	deer	are
harvested	per	year.	Use	a	cobweb	diagram	to	verify	that	the	equilibrium	value	

	is	unstable.

The	DDS	for	this	example	is	 ;	hence	our
reproduction	function	f	is	 .	The	cobweb	diagram	in	Figure	5.14
shows	that	no	matter	the	initial	population	(one	below	equilibrium,	one	above),	we	will
always	tend	away	from	the	equilibrium	value.	This	confirms	our	earlier	work	showing
that	 	is	an	unstable	equilibrium.

FIGURE	5.14	Cobweb	diagram	showing	an	unstable	equilibrium	for	Example	5.7.

5.1.4	Section	Exercises

1.	 Recall	that	for	baleen	whales	we	assume	that	 	and	 .	If	in	1985	the
population	was	 ,	determine	how	long	it	will	take	for	the	population	to	reach
300,000	blue	whale	units.

2.	 Use	the	formula	for	the	growth	rate	for	the	logistic	model	to	find	the	population	at	which
the	absolute	(as	opposed	to	percentage)	population	growth	would	be	largest.	Confirm	your
result	by	noting	this	population	on	a	graph	of	the	discrete	logistic	model.

3.	 Reveal	a	shortcoming	in	the	discrete	logistic	model	by	choosing	a	very	large	initial
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population.

4.	 Extension:	For	the	general	discrete	logistic	model,	find	the	smallest	initial	population	that
will	result	in	a	negative	population	during	the	next	time	step.

5.	 Extension:	For	the	general	discrete	logistic	model,	find	the	population	that	results	in	the
largest	absolute	population	growth	during	the	next	time	step.

6.	 For	the	general	discrete	logistic	model,	show	algebraically	that	the	two	equilibrium	values
are	K	and	0.

7.	 Explain	in	a	complete	sentence	or	two	why	the	values	you	found	in	Exercise	6	make	sense
intuitively.

8.	 For	the	baleen	whale	example,	determine	the	stability	of	the	two	equilibrium	values	by
producing	an	appropriate	graph.

9.	 Find	the	estimates	for	the	intrinsic	growth	rate	and	carrying	capacity	of	the	earth’s	human
population.	Be	sure	to	cite	your	source(s).	Use	the	current	world	population	along	with	the
parameters	you	found	to	predict	the	world’s	population	over	the	next	50	years.	Display
your	predictions	on	a	graph.

10.	 Suppose	in	the	discrete	logistic	model	that	 	and	 .

a.	 Show	that	if	 ,	then	the	population	will	move	away	from	20,000.

b.	 Explain	why	20,000	is	not	an	unstable	equilibrium	value.

5.2	LOGISTIC	GROWTH	WITH	ALLEE	EFFECTS
Our	logistic	growth	model	incorporated	more	realism	into	our	population	models	by	putting	a
limit	on	how	large	a	population	can	eventually	get,	and	we	called	this	limit	the	carrying
capacity.	In	this	section	we	incorporate	a	similar	observation	from	many	real	populations:	as	a
population	declines,	eventually	it	can	become	too	small	to	recover	and	will	crash.	This	limit
on	how	small	a	viable	population	can	be	is	known	as	the	sustainability	threshold,	the	level
below	which	the	population	will	go	extinct.

Some	reasons	why	we	see	sustainability	thresholds	in	real	populations	include	members
having	more	difficulty	finding	mates	and	being	more	vulnerable	to	predators.	Such	effects	are
known	as	Allee	effects	after	Warder	Clyde	Allee,	a	zoologist	who	first	observed	them	in	the
1930s	(Drake	&	Kramer,	2011).

Let	S	denote	the	sustainability	threshold	for	a	population.	Our	new	model	must	reflect	the	fact
that	if	 ,	then	the	population	will	decline.	Stated	in	terms	of	the	population	growth
rate,	we	have	that	if	 ,	then	the	population	growth	rate	should	be	negative.	Together
with	the	features	of	the	logistic	growth	rate,	we	now	seek	a	model	whose	growth	rate	satisfies:

1.	 The	growth	rate	is	negative	if	the	population	is	less	than	S.

2.	 The	growth	rate	is	positive	if	the	population	is	between	S	and	K.



3.	 The	growth	rate	is	negative	if	the	population	is	larger	than	K.

The	simplest	function	that	accomplishes	all	three	requirements	is	a	downward-pointing
parabola,	or	quadratic.	We	give	the	graph	for	such	a	growth	rate	in	Figure	5.15.

FIGURE	5.15	Growth	rate	versus	population	for	Allee	effects	model.

To	form	the	quadratic	for	the	new	growth	rate,	we	force	a	root	to	appear	at	 	by

multiplying	the	original	logistic	growth	rate	by	the	factor	 .	Thus	the	quadratic
growth	rate	for	our	new	model	is	given	by

Note	that	this	growth	rate	satisfies	the	three	requirements	above.

Using	the	new	growth	rate	in	place	of	the	logistic	version	gives	us	the	DDS	for	the	new	model:

We	call	this	new	model	the	logistic	model	with	Allee	effects	or	simply	the	Allee	effects
model.	Here	we	still	refer	to	r	as	the	intrinsic	growth	rate	even	though	in	the	new	model	it	is
no	longer	the	maximal	growth	rate.



In	the	next	example	we	use	the	Allee	effects	model	in	order	to	investigate	the	population	of
giant	pandas,	an	endangered	species	that	has	become	a	symbol	for	wildlife	conservation
efforts.	It	is	a	naturally	very	slow	growing	population	with	reproductive	females	typically
producing	1	cub	every	2	years	(WWF,	2015).	This	slow	growth	makes	the	giant	panda
vulnerable	to	negative	effects	from	poaching	and	from	the	removal	of	reproductive	pandas	for
placement	in	zoos	(Carter,	Ackleh,	Leonard,	&	Wang,	1999).

The	giant	panda	is	unusual	in	that	its	diet	is	made	up	almost	entirely	of	1	food	source:	bamboo.
In	order	to	find	enough	bamboo	to	eat,	giant	panda	populations	continually	migrate	in	search	of
new	sources.	Thus	a	major	source	of	stress	on	the	giant	panda	is	not	only	habitat	depletion	but
also	the	closing	off	of	migration	routes	due	to	development	(Carter,	Ackleh,	Leonard,	&	Wang,
1999).

At	low	levels	giant	panda	populations	have	been	shown	to	experience	Allee	effects	related	to
lack	of	mate	selection	(Moller	&	Legendre,	2001).	This	helps	explain	the	difficulty	that	captive
breeding	programs	for	the	giant	panda	have	experienced,	and	it	indicates	that	our	Allee	effects
model	is	a	reasonable	choice	as	a	starting	model	for	the	giant	panda	population.	Though	we
will	consider	the	wild	giant	panda	population	as	a	whole,	it	is	really	comprised	of	several
subpopulations,	each	of	which	could	be	modeled	individually.

Estimates	of	giant	panda	population	parameters	are	difficult	to	make.	For	parameter	values	for
r	and	K,	we	rely	primarily	on	the	work	of	Carter,	Ackleh,	Leonard,	and	Wang	(1999),	and	we
have	to	make	our	own	estimate	for	K	based	on	their	data.	We	use	a	combination	of	the	data	in
Carter	and	in	Wang,	Li,	and	Pan	(2001)	to	estimate	the	sustainability	threshold,	S.	For
population	estimates,	we	use	those	provided	by	the	World	Wildlife	Fund	(WWF,	2014).

Example	5.8:

For	the	wild	giant	panda	population,	we	let	 ,	 ,	and	 .
Population	estimates	put	the	giant	panda	population	at	approximately	1100	in	1977.	Use
the	Allee	effects	model	to	project	the	giant	panda	population	in	the	year	2004.

We	begin	by	starting	with	our	Excel	model	for	the	discrete	logistic	model	and	storing	the
sustainability	threshold	in	its	own	cell.	We	then	enter	the	formula	for	the	Allee	effects
model.	The	result	is	shown	in	Figure	5.16.



FIGURE	5.16	Allee	effects	Excel	model	setup.

Next	we	copy	our	model	equations	down	to	year	 	(2004),	hide	the	rows	we	do	not
need	to	see,	and	display	the	result	in	Figure	5.17.	We	see	that	the	model	predicts	about
1627	pandas	for	the	year	2004.

FIGURE	5.17	Allee	effects	model	projections	for	giant	panda	population.



A	2004	survey	of	the	giant	panda	population	estimated	the	population	at	about	1600	pandas.
Thus	our	model	seems	to	have	generated	a	reasonable	prediction	over	the	time	period	from
1977	to	2004.	The	most	recent	census	of	the	panda	population	indicated	that	the	giant	panda
population	continued	to	increase	to	a	level	of	1864	pandas	in	2014.	In	the	exercises	the	reader
is	invited	to	compare	a	model	prediction	with	this	most	recent	estimate.

In	the	next	section	we	show	that	the	inclusion	of	the	sustainability	threshold	in	our	model
introduces	a	new	equilibrium	value.

5.2.1	Equilibrium	Analysis
To	find	the	equilibrium	values,	we	must	find	values	for	 	that	leave	the	DDS	unchanged.	In
this	case	we	must	find	values	for	 	such	that

This	last	equation	is	equivalent	to	 .	We	are	now	in	a	familiar	situation
where	we	have	a	product	of	terms	that	equals	zero	so	that	at	least	one	of	the	terms	must	be

zero.	This	leads	to	three	possible	equilibrium	values.	If	 ,	then	 ;	if	

,	then	 ;	and	otherwise	 .	Thus	the	three	equilibria	for	the	Allee	effects
model	are	the	carrying	capacity,	the	sustainability	threshold,	and	extinction.

In	the	next	example	we	determine	the	stability	of	the	equilibrium	values	for	the	giant	panda
population	from	Example	5.8.

Example	5.9:

Assuming	the	same	parameters	as	in	Example	5.8,	determine	the	stability	of	the
equilibrium	values	for	the	panda	Allee	effects	model.

We	proceed	by	using	Excel	to	create	a	graph	for	the	panda	model	starting	at	several
different	initial	populations.	Because	of	the	wide	spread	between	sustainability	and
carrying	capacity,	it	is	difficult	to	produce	a	graph	that	clearly	shows	both	at	the	same
time.	We	start	by	examining	the	equilibrium	at	the	carrying	capacity	of	16,000.	The	result
is	given	in	Figure	5.18.



FIGURE	5.18	Determining	stability	for	giant	panda	equilibrium	at	carrying	capacity.

The	graph	indicates	populations	converging	to	the	carrying	capacity	so	we	have	a	stable
equilibrium	there.

Figure	5.19	focuses	on	the	behavior	near	the	sustainability	threshold	of	480.

FIGURE	5.19	Determining	stability	for	giant	panda	equilibrium	at	sustainability
threshold.

This	graph	shows	populations	moving	away	from	480	so	we	have	an	unstable	equilibrium
there.	Note	that	we	also	see	populations	below	480	crashing	to	extinction.	This	gives	us	a
stable	equilibrium	at	0,	which	is	different	from	the	behavior	exhibited	by	the	discrete
logistic	model	without	Allee	effects.



As	is	the	case	for	the	discrete	logistic	model,	we	cannot	make	general	claims	about	the
stability	of	the	equilibrium	values	for	the	Allee	effects	model.	Different	parameter	choices	can
lead	to	different	results,	so	it	is	always	a	good	idea	to	test	the	particular	situation	of	interest
with	Excel.

5.2.2	Section	Exercises

1.	 The	most	recent	survey	of	the	panda	population	yielded	an	estimate	of	1864	pandas	in
2014.	Compare	this	estimate	to	what	our	model	from	Example	5.8	projects.

2.	 Suppose	that	the	Antarctic	baleen	whale	population	would	crash	if	it	falls	below	30,000
BWU.	Use	the	Allee	effects	model	to	graph	the	population	from	1985	to	2015.

3.	 Suppose	that	the	giant	panda	population	did	not	experience	Allee	effects	and	was	instead
well	modeled	by	the	discrete	logistic	model.

a.	 Using	the	same	parameters	as	in	Example	5.8,	project	the	giant	panda	population	in
2020	using	the	discrete	logistic	model.

b.	 Compare	the	projection	in	(a)	to	the	projection	for	2020	where	Allee	effects	are
incorporated.

c.	 Determine	by	examining	the	Allee	effects	DDS	what,	specifically,	accounts	for	the
difference.

4.	 Determine	the	panda	population	at	which	the	population	experiences	its	largest	absolute
growth.

5.	 Reveal	a	shortcoming	in	the	Allee	effects	model	for	the	giant	panda	population	by	finding
populations	that	will	result	in	a	negative	population	projection	for	the	next	time	step.

6.	 Investigate	the	effect	that	setting	 	has	on	the	discrete	logistic	model	with	Allee
effects.

7.	 Analyze	the	graph	of	the	growth	rate	function	for	the	logistic	model	with	Allee	effects.	Why
is	this	graph	not	realistic	for	some	population	values?

8.	 Extension:	For	the	general	discrete	logistic	model	with	Allee	effects,	determine	the
population	that	will	result	in	the	largest	absolute	increase	in	the	population	for	the	next
time	step.

5.3	LOGISTIC	GROWTH	WITH	HARVESTING
In	the	previous	section	we	refined	the	logistic	model	by	including	the	effect	of	a	sustainability
threshold.	In	this	section	we	modify	the	logistic	model	again	but	in	a	different	direction.	We
examine	logistic	growth	with	harvesting	in	the	context	of	a	fishery	model,	and	we	consider	two
different	harvesting	strategies.	The	first	is	constant	take	harvesting.	Here	we	imagine	fishers



having	a	goal	(or	a	government-set	limit)	for	the	number	of	fish	they	take	each	day,	regardless
of	how	long	it	takes	them	to	do	so.	In	this	situation	we	have	a	constant	number	of	fish	that	will
be	harvested	each	day.	The	second	type	of	harvesting	is	constant	effort	harvesting.	Here	we
have	fishers	who	can	only	fish	for,	say,	8 h	per	day,	and	so	the	catch	will	vary	depending	on
how	abundant	the	fish	are.	In	this	situation	we	will	have	a	constant	percentage	of	available
fish	harvested	each	day	rather	than	a	constant	number.

First	we	examine	the	constant	take	situation.

5.3.1	Constant	Take	Harvesting
For	this	scenario,	we	set	h	as	the	constant	number	of	fish	harvested	each	time	period.	Then	we
modify	our	logistic	model	in	a	familiar	way:

The	introduction	of	harvesting	has	an	interesting	and	telling	effect	on	the	equilibrium	values
and	overall	behavior	of	the	population.

5.3.2	Equilibrium	Analysis
The	algebra	for	finding	the	equilibrium	values	is	more	involved	than	before	and	requires	the
quadratic	formula.	Recall	that	the	quadratic	formula	states	that	if	 ,	then	

.

We	start	with

and	immediately	simplify	to	 .	After	collecting	like	terms	and	clearing	the

coefficient	on	 ,	we	arrive	at	the	quadratic	equation	 .	With	 ,	

,	and	 ,	the	quadratic	formula	gives	us	the	solution	 .

We	get	two	distinct	equilibrium	values	if	the	discriminant,	 ,	is	greater	than	0,	one
unique	equilibrium	value	if	the	discriminant	equals	0,	and	no	equilibrium	values	if	the
discriminant	is	less	than	0.	Thus	the	value	for	h	that	makes	the	discriminant	equal	to	0
represents	a	harvesting	number	where	the	model’s	behavior	changes	dramatically.	By	setting

the	discriminant	equal	to	0	and	solving	for	h,	we	see	that	this	harvesting	number	is	 .



In	the	next	example	we	explore	the	practical	implications	of	our	analysis	for	the	Antarctic
baleen	whale	population.

Example	5.10:

Recall	that	for	our	baleen	whale	population,	we	have	 	and	 .	We
assume	constant	harvesting	of	the	population	at	a	level	of	 	per	year.	Perform	an
equilibrium	analysis	on	the	model.

According	to	our	algebra,	we	should	have	two	equilibrium	values:

This	gives	us	the	values	 	and	 .	In	Figure	5.20	we	show
these	two	equilibrium	values	along	with	population	graphs	for	several	different	initial
populations.

FIGURE	5.20	Model	behavior	when	h = 3000.

Note	that	the	larger	equilibrium	appears	to	be	stable,	while	the	smaller	equilibrium
appears	to	be	unstable.	Fishing	at	a	constant	level	has,	in	effect,	introduced	a
sustainability	threshold	into	the	population	even	though	there	was	not	one	in	the	original
model.	If	the	population	of	whales	dips	below	73,508.9,	it	will	go	extinct.

Next	we	increase	the	harvesting	level	to	4000	BWU	per	year.



Example	5.11:

Examine	the	effect	of	increasing	the	harvesting	level	to	4000	BWU	per	year.

The	overall	behavior	of	our	model	does	not	change.	We	still	get	two	equilibrium	values:	a
larger	one	that	is	stable	and	a	smaller	one	that	is	unstable.	The	particular	values	change,
however.	With	 	we	get

This	gives	us	the	two	values	 	and	 .	The	graph,	given	in
Figure	5.21,	looks	similar,	but	if	we	look	closely	we	see	an	important	difference:	the
equilibrium	values	have	gotten	closer	together	since	the	unstable	value	has	gotten	larger
and	the	stable	value	has	gotten	smaller.	This	means	that	there	is	less	room	for	error	with	a
larger	harvesting	number.	If	our	population	were	to	fall	below	about	110,000,	it	would	not
recover.

FIGURE	5.21	Model	behavior	when	h = 4000.

A	natural	question	at	this	point	is	whether	there	is	a	harvesting	level	above	which	the
population	is	doomed.	We	show	what	our	model	says	about	this	question	in	the	next	example.



Example	5.12:

Examine	the	effect	of	increasing	the	harvesting	level	to	5000	BWU	per	year.

With	a	harvesting	level	of	5000	per	year,	we	get	qualitatively	different	behavior.	Here	we
have	only	one	equilibrium	value,	 .	When	we	graph	model	projections	for
several	different	initial	populations	(see	Fig.	5.22),	we	see	that	populations	above
200,000	tend	to	decrease	down	to	200,000,	while	populations	below	200,000	move	away
from	200,000	and	crash.

FIGURE	5.22	A	bifurcation	occurs	when	h = 5000.

This	is	our	first	example	of	a	semistable	equilibrium,	and	it	is	not	a	good	situation	for	the
population	of	whales.	On	the	one	hand,	if	the	population	starts	out	above	200,000,	it
seems	safe	since	it	will	never	fall	below	it.	On	the	other	hand,	if	we	overfish	by	even	a
little	bit	or	if	there	is	some	other	minor	disturbance	that	causes	the	population	to	drop
below	200,000,	it	will	eventually	crash.

An	example	of	such	a	dramatic	fishery	collapse	occurred	in	1972	when	a	warming	El	Niño	and
overfishing	combined	to	cause	the	anchoveta	anchovy	fishery	to	collapse	off	the	coast	of	Peru.
This	had	formerly	been	one	of	the	largest	fisheries	in	the	world	yielding	13	million	tons	of	fish
at	its	peak	(Schwartzlose	et	al.,	1999).

Finally	we	look	at	the	case	where	the	harvest	level	is	 .



Example	5.13:

Examine	the	consequences	of	a	harvest	level	of	 .

In	this	case	the	model	has	no	equilibrium,	and	we	see	the	consequences	of	this	in	the	graph
in	Figure	5.23.	With	such	a	high	harvest	level,	the	population	will	crash	regardless	of	the
initial	population.

FIGURE	5.23	The	population	crashes	when	h = 6000.

The	harvest	level	 	is	a	special	kind	of	parameter	value	known	as	a	bifurcation	point.
A	bifurcation	point	is	a	parameter	value	at	which	the	qualitative	behavior	of	a	model	changes,
for	example,	with	a	change	in	the	number	or	types	of	equilibria	present.	In	the	baleen	whale
model,	the	bifurcation	at	 	marked	a	place	where	the	model	went	from	having	two
equilibria	(one	stable,	one	unstable)	to	one	semistable	equilibrium.	Any	harvest	level	above	

	yields	no	equilibria	and	a	crashing	population.

5.3.3	Maximum	Sustainable	Yield	for	Constant	Take
We	have	seen	in	the	previous	section	that	harvesting	too	much	from	a	population	can	have
devastating	consequences.	A	natural	next	question	is	to	ask	“How	much	should	we	harvest?”
An	answer	to	this	question	that	has	been	used	by	many	fisheries	is	based	on	the	concept	of
maximum	sustainable	yield	(MSY).	The	MSY	is	the	largest	number	that	can	be	harvested	from
a	population	while	allowing	the	population	to	sustain	itself	in	the	long	term.

In	order	for	a	harvest	to	not	decrease	the	overall	population,	the	most	that	can	be	harvested	in
any	time	step	is	the	amount	of	growth	the	population	undergoes.	The	MSY	will	occur	where
this	growth	is	the	largest.	As	the	next	example	shows	for	the	discrete	logistic	model,	the	MSY



occurs	at	a	population	size	equal	to	half	the	carrying	capacity.

Example	5.14:

Find	the	MSY	for	the	baleen	whale	example.

We	have	 	and	 .	The	DDS	for	the	model	is

Note	that	the	part	of	the	DDS	that	gives	the	absolute	change	in	population	from	1	year	to

the	next	is	 .	We	need	to	find	the	maximum	value	for	this	change.

Thinking	of	the	change	as	the	function	 ,	we	graph	g	to	find	its
maximum.	Figure	5.24	shows	the	graph	for	g.

FIGURE	5.24	The	MSY	occurs	at	h = 5000.

Note	that	the	highest	point	on	the	graph	occurs	at	a	population	of	 ,	with	a
value	of	 .	Thus	the	largest	possible	sustainable	harvest	level	for	the
baleen	whale	population	is	 .	This	is	the	largest	possible	harvest	level	for	the
baleen	whale	population	that	would	prevent	a	decrease	in	the	population	long	term.

Note	that	the	value	found	in	Example	5.14	is	the	bifurcation	point	where	the	model	changes
from	having	two	equilibria	to	having	one	semistable	equilibrium.	If	the	whale	population



began	over	200,000,	then	a	harvest	level	at	MSY	would	keep	the	population	level	above
200,000	indefinitely.	However,	as	we	pointed	out	previously,	this	puts	the	whale	population	in
a	precarious	position	since	any	perturbation	below	200,000	would	mean	eventual	extinction
for	the	whales.

Finally	we	note	that	the	population	value	for	MSY	occurred	exactly	halfway	between	the	two
equilibrium	values	of	extinction	and	the	carrying	capacity.	This	is	not	a	coincidence.	The
function	representing	the	change	in	the	population,	g,	is	a	downward-pointing	parabola	with
roots	at	 	and	 .	The	vertex	of	a	parabola	occurs	midway	between	the	two	roots,	so	our

maximum	will	always	occur	at	a	population	of	 .	Then	the	MSY	will	always	be	equal	to

While	the	MSY	may	initially	appear	to	be	an	attractive	method	for	determining	a	harvest	level,
in	practice	it	is	generally	not	a	good	idea.	As	we	note	previously,	the	MSY	harvesting	level	is
a	bifurcation	point	that	introduces	a	semistable	equilibrium	value	into	the	model.	If	the
population	falls	below	this	value,	then	the	MSY	harvest	number	will	cause	the	population	to
collapse.	Given	the	difficulties	involved	with	obtaining	accurate	population	estimates	and	the
possibility	of	outside	factors	that	could	negatively	affect	population	levels,	MSY	should	be
used	with	caution	and	only	in	conjunction	with	strict	population	monitoring.

5.3.4	Constant	Effort	Harvesting
In	this	section	we	examine	an	alternate	method	of	harvesting.	Instead	of	setting	a	quota,	we	set
a	limit	on	the	fishing	effort	expended.	As	an	example	of	this	kind	of	control,	rather	than
allowing	as	many	boats	as	necessary	to	catch	a	particular	number	of	fish,	we	could	restrict	the
number	or	length	of	time	that	boats	can	fish.	If	we	only	allow,	say,	10	boats	to	fish	for	2	weeks
no	matter	the	population,	then	the	catch	will	not	be	constant.	It	will	instead	be	based	on	how
easy	it	is	for	those	boats	to	find	fish	and	hence	how	abundant	the	fish	are.	Consequently,	we
associate	constant	effort	fishing	with	a	harvest	level	that	corresponds	to	a	proportion	of	the	fish
available.

We	assume	now	that	we	have	restricted	fishing	effort	so	that	a	certain	percentage	of	the	fish
population	is	harvested	in	a	given	time	step.	We	denote	this	percentage	by	e	and	we	modify	our
logistic	model	to	reflect	this	change:

As	we	did	for	the	constant	take	case,	we	examine	the	equilibria	of	the	model	next.

5.3.5	Equilibrium	Analysis



To	find	the	equilibrium	values,	we	solve	 	for	 .	This	reduces	to

solving	 .	Collecting	like	terms	and	factoring	give	us	 .

One	equilibrium	value	is	therefore	 	(extinction).	The	other	we	find	by	solving	

	for	 .	This	yields	 .

As	before	we	examine	the	model	graphically	for	a	variety	of	choices	for	the	parameter	e	and
different	initial	populations.

Example	5.15:

Investigate	the	effects	of	constant	effort	harvesting	on	the	baleen	whale	population	if	
.

Our	DDS	becomes	 .	We	know
from	our	work	above	that	we	have	two	equilibrium	values,	one	at	extinction	and	one	at	

.	The	graph	in	Figure	5.25	indicates	that	the
equilibrium	at	320,000	is	stable.

FIGURE	5.25	Determining	stability	when	e = 0.01.

Unlike	the	constant	take	case,	the	constant	effort	model	does	not	introduce	a	sustainability
threshold.	Furthermore,	increasing	the	harvesting	level	to	2.5%	lowers	the	equilibrium	to
200,000,	but	unlike	the	constant	take	case,	the	equilibrium	is	still	stable.	In	other	words,	with



constant	effort,	the	baleen	whale	population	can	withstand	occasional	setbacks	due	to	slight
overfishing	or	natural	disasters.	It	is	only	when	the	effort	rate	equals	the	population’s	intrinsic
growth	rate	that	we	have	guaranteed	extinction.

5.3.6	MSY	for	Constant	Effort
We	noted	in	Section	5.3.3	that	the	MSY	for	a	population	under	the	constant	take	model	occurs

at	a	population	of	 	and	equals	 .	We	use	these	two	facts	to	set	an	effort	level,	e,	that

produces	the	MSY	when	the	population	is	equal	to	 .	What	we	need	is	to	find	e	such	that

Solving	for	e	yields	 .	Thus	the	MSY	for	the	constant	effort	model	occurs	when	fishing
effort	is	one	half	of	the	population’s	intrinsic	growth	rate.

Example	5.16:

Find	the	fishing	effort	that	produces	the	MSY	for	the	Antarctic	baleen	whale	fishery.

This	is	a	straightforward	calculation	because	we	already	have	 .	Thus	

.

The	result	of	using	a	fishing	effort	of	 	is	an	equilibrium	value	of

This	is	the	same	equilibrium	value	that	we	found	in	the	constant	take	model	when	using	MSY	to
set	our	harvest	level.	However,	the	situation	here	is	much	different.	In	the	constant	take	case,
the	resulting	equilibrium	value	was	semistable:	any	fluctuation	of	the	population	below	the
equilibrium	would	cause	the	population	to	crash.	In	this	case,	however,	the	equilibrium
remains	stable.	Fluctuations	of	the	population	of	whales	below	the	equilibrium	will	not	cause
the	population	to	crash.	Instead	the	lower	population	would	result	in	a	leaner	harvest	because
the	constant	effort	model	harvests	a	proportion	of	the	available	catch.	This	allows	the
population	to	recover	to	the	desired	MSY	population	level.

In	the	next	section	we	return	to	our	study	of	the	discrete	logistic	model.	We	have	mentioned	that
we	cannot	make	general	claims	about	the	stability	of	its	equilibrium	values	because	stability
depends	on	the	choice	of	parameters.	In	the	following	we	will	examine	just	how	different	the
model	behavior	can	be	for	different	parameter	values.



5.3.7	Section	Exercises

1.	 Suppose	a	fishery	has	an	intrinsic	growth	rate	of	 	and	a	carrying	capacity	of	
.

a.	 Find	the	maximum	sustainable	yield	for	the	fishery.

b.	 Assume	that	a	constant	take	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens	to
the	population	over	time	if	it	starts	at	carrying	capacity?

c.	 Assume	that	a	constant	effort	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens
to	the	population	over	time	if	it	starts	at	carrying	capacity?

2.	 For	the	fishery	described	in	Exercise	1,	answer	the	following.

a.	 Assume	that	a	constant	take	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens	to
the	population	over	time	if	it	starts	at	half	of	its	carrying	capacity?

b.	 Assume	that	a	constant	effort	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens
to	the	population	over	time	if	it	starts	at	half	of	its	carrying	capacity?

3.	 For	the	fishery	described	in	Exercise	1,	answer	the	following.

a.	 Assume	that	a	constant	take	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens	to
the	population	over	time	if	it	starts	at	400,000?

b.	 Assume	that	a	constant	effort	strategy	is	used	to	harvest	fish	at	the	MSY.	What	happens
to	the	population	over	time	if	it	starts	at	400,000?

4.	 Extension:	For	the	fishery	described	in	Exercise	1,	the	MSY	was	set	using	the	assumed
intrinsic	growth	rate	of	 .	Suppose	a	mistake	was	made	when	estimating	the	intrinsic
growth	rate	and	that	it	actually	turns	out	to	be	 .	Investigate	the	consequences	of	this
mistake	for	both	the	constant	take	and	constant	effort	models	if	the	MSY	harvest	levels
were	set	using	the	mistaken	value	of	 .

5.	 Extension:	For	the	fishery	described	in	Exercise	1,	the	MSY	was	set	using	the	assumed
carrying	capacity	of	 .	Suppose	that	a	mistake	was	made	when	estimating	the
carrying	capacity	and	that	it	actually	turns	out	to	be	 .	Investigate	the
consequences	of	this	mistake	for	both	the	constant	take	and	constant	effort	models	if	the
MSY	harvest	levels	were	set	using	the	mistaken	value	of	 .

6.	 In	light	of	Exercises	3,	4,	and	5,	discuss	which	strategy	seems	to	be	riskier	for	managing	a
fishery:	constant	take	harvesting	or	constant	effort	harvesting.

7.	 For	the	constant	take	harvest	model,	show	that	if	there	is	a	semistable	equilibrium	value,
then	it	occurs	at	a	population	equal	to	half	the	carrying	capacity.

8.	 Show	that	for	the	constant	effort	model	extinction	occurs	whenever	 .	Explain	why	this
makes	intuitive	sense.



5.4	THE	DISCRETE	LOGISTIC	MODEL	AND	CHAOS
Over	the	last	few	decades,	the	discrete	logistic	model	has	been	the	subject	of	dozens	of
scholarly	articles	by	mathematicians	and	other	scientists.	One	of	the	reasons	for	all	of	the
interest	is	the	fact	that	even	this	relatively	simple	deterministic	model	displays	some
remarkable	properties—properties	that	have	potentially	interesting	or	even	alarming
implications	for	biological	systems	(May	&	Oster,	1976).	The	single	most	interesting,	and
initially	disturbing,	property	of	the	model	is	that	it	is	one	of	the	first	examples	of	a	simple
model	from	which	chaos	emerges.	In	this	section	we	present	a	few	illustrative	numerical
examples	of	what	is	meant	by	chaos.	A	full	mathematical	treatment	of	the	material	that	follows
may	be	found	in	many	sources,	including	May	R.	M.	(1976).

As	the	intrinsic	growth	rate,	r,	in	the	discrete	logistic	model	is	allowed	to	increase,	the	model
begins	to	show	more	and	more	complex	behavior.	In	the	following	discussion,	we	examine	this
behavior	by	(i)	fixing	the	carrying	capacity	at	 	and	(ii)	graphing	the	logistic	model
over	time	for	several	different	initial	populations.

Under	what	we	would	probably	call	“normal”	conditions,	the	graph	of	the	discrete	logistic
model	forms	an	S	shape.	In	Figure	5.26	we	show	a	typical	discrete	logistic	graph	for	
with	three	initial	populations	that	are	all	close	together:	100,	120,	and	140.

FIGURE	5.26	Typical	discrete	logistic	S-shaped	graph	when	r = 0.10.

Important	features	to	notice	are	that	(i)	the	carrying	capacity,	1000,	is	a	stable	equilibrium	and
(ii)	the	graphs	corresponding	to	the	different	initial	populations	start	out	close	together	and
remain	close	together	over	time.

Next,	in	Figure	5.27	we	examine	the	same	graph	but	with	 	This	time	we	see	that	the
graphs	are	steeper,	but	observations	(i)	and	(ii)	from	before	still	hold.



FIGURE	5.27	Discrete	logistic	graph	when	r = 0.50.

Next	we	try	a	much	larger	growth	rate	 	and	present	the	resulting	graph	in	Figure	5.28.
This	is	our	first	indication	that	something	unusual	is	going	on.	Instead	of	approaching	the
carrying	capacity	and	staying	there,	our	population	settles	down	into	what	is	called	a	stable
cycle	of	period	two.	This	means	that	the	population	eventually	follows	a	pattern	where	it	is
bouncing	back	and	forth	between	two	constant	values,	in	this	case	the	values	1129	and	824.
With	such	a	large	growth	rate—the	population	more	than	doubles	every	time	step—the
population	experiences	overshoot.	This	happens	when	a	population	temporarily	exceeds	its
carrying	capacity.	It	then	overcorrects	to	below	carrying	capacity,	and	the	cycle	repeats.

FIGURE	5.28	Discrete	logistic	graph	when	r = 2.1.

If	we	increase	r	to	 ,	we	find	a	stable	cycle	of	period	four	as	shown	in	Figure	5.29.	Here



the	population	settles	down	into	a	pattern	where	it	cycles	through	the	same	four	values:	1225,
536,	1158,	and	701.	Again	we	see	that	increasing	r	has	led	to	an	increase	in	the	complexity	of
the	model	behavior.	The	model	is	bifurcating	as	we	increase	r.

FIGURE	5.29	Discrete	logistic	graph	when	r = 2.55.

If	we	increase	r	to	2.55,	we	get	a	stable	cycle	of	period	eight,	though	the	values	become
difficult	to	distinguish	on	the	graph.

A	remarkable	fact	about	the	behavior	of	the	discrete	logistic	model	that	is	not	easy	to	prove	is
that	we	can	arrange	to	get	a	stable	cycle	whose	period	is	any	power	or	two	by	continuing	to
increase	r	in	small	increments	(May	R.	M.,	1978).

Even	more	remarkable	is	that	once	we	increase	r	to	be	greater	than	2.570,	we	get	chaos	(May
R.	M.,	1978).	As	an	example	of	what	we	mean	by	chaotic	behavior,	we	show	the	result	of
taking	 	on	our	graph	in	Figure	5.30.	In	this	graph	there	is	no	discernible	pattern:	it	is
chaotic	in	a	literal	sense.	We	also	see	that	our	initial	populations,	which	start	out	close
together,	end	up	far	apart.	The	model	is	exhibiting	what	is	known	as	sensitive	dependence	on
initial	conditions,	also	known	as	the	butterfly	effect,	whereby	small	changes	in	the	model
input	result	in	large	changes	in	the	output.	This	is	one	of	the	defining	characteristics	of	chaotic
behavior.



FIGURE	5.30	Discrete	logistic	graph	when	r = 2.8.

We	note	that	if	r	is	greater	than	2.570,	we	do	not	necessarily	get	chaotic	behavior.	In	fact	just
about	anything	can	happen.	We	can	get	a	stable	cycle	of	any	period,	or	we	can	get	behavior	that
never	repeats.	The	exact	cutoffs	for	when	one	behavior	stops	and	another	starts	are	difficult	to
determine	analytically,	but	May	has	done	so.	His	results	are	presented	in	Table	5.1.

TABLE	5.1	The	Behavior	of	the	Discrete	Logistic	Model	for	Increasing	Values	of	r
Source:	Adapted	from	May	R.	M.	(1976),	table	2.3,	p.	14.	Reproduced	with	permission	from	John	Wiley	&	Sons,	Inc.

Value	of	Intrinsic	Growth
Rate

Population	Behavior

Tends	to	K
Cycles	through	2	values
Cycles	through	4	values
Cycles	through	8	values
Cycles	through	16,	then	32,	then	64,	etc.
Chaotic	behavior:	cycles	of	arbitrary	period	or	aperiodic
behavior
Guaranteed	extinction

5.5	THE	RICKER	MODEL
We	based	the	discrete	logistic	model	on	the	observation	that	the	growth	rate	for	a	species	will
not	remain	constant	in	the	long	term;	instead	the	growth	rate	should	decline	as	the	population
grows.	The	simplest	way	to	represent	a	declining	growth	rate	is	with	a	negatively	sloped
straight	line	as	shown	in	Figure	5.2.	However,	the	scale	of	that	graph	hides	an	important	flaw



in	this	representation,	namely,	that	if	we	continue	the	straight	line,	the	growth	rate	eventually
falls	below	−1.	This	means	that	our	model	would	predict	more	than	a	100%	decrease	in	the
population,	which	does	not	make	physical	sense.	Even	under	the	worst	circumstances,	the	limit
on	our	negative	growth	rate	should	be	−1.

In	this	section	we	modify	the	discrete	logistic	model	to	prevent	the	possibility	of	a	growth	rate
less	than	−1.	The	result	is	called	the	Ricker	model,	named	after	W.	C.	Ricker	who	developed
it.	The	Ricker	model	is	an	historically	important	model	that	has	been	used	in	the	management
of	the	Pacific	salmon	(Clark,	1985).

We	represent	the	idea	behind	the	Ricker	model	with	a	graph	for	the	population	growth	rate
similar	to	the	one	in	Figure	5.2.	We	still	begin	the	graph	at	the	intrinsic	growth	rate,	and	we
still	require	that	at	the	carrying	capacity,	K,	the	growth	rate	should	be	0.	The	important
difference	in	the	new	graph	is	that	the	growth	rate	can	never	fall	below	−1	regardless	of	how
large	the	population	grows.	Instead	we	have	a	horizontal	asymptote	at	the	value	−1	(see	Fig.
5.31).

FIGURE	5.31	Growth	rate	versus	population	for	Ricker	model.

Note	that	the	graph	satisfies	the	three	requirements:	(1)	the	growth	rate	is	equal	to	the	intrinsic
growth	rate	when	 ;	(2)	the	growth	rate	is	equal	to	0	when	the	population	is	at	carrying
capacity,	 ;	and	(3)	no	matter	how	large	the	population	gets,	the	growth	rate	never	falls



below	−1.

The	challenging	part	of	developing	the	Ricker	model	is	finding	a	function	for	the	growth	rate
whose	graph	matches	the	curve	presented	in	Figure	5.31.	There	are	in	fact	many	different
curves	with	the	correct	shape,	but	the	one	that	Ricker	employed	is	an	exponential	function.
Specifically,	we	seek	a	function	of	the	form	 ,	where	a	and	b	are	positive
constants	that	we	select	to	fit	to	our	graph.	The	negative	exponent	forces	the	exponential	term
to	level	off	at	0	as	the	population	grows	larger	and	larger,	and	the	subtraction	of	1	translates
the	graph	down	so	that	it	levels	off	at	the	required	−1	instead.

What	remains	is	to	determine	the	constants	a	and	b.	We	accomplish	this	by	using	the	two
known	points	on	our	graph	to	set	up	two	equations	for	our	two	unknowns.	The	two	known
points	are	the	same	ones	we	used	when	developing	the	logistic	equation:	 	and	 .	Our
two	equations	for	the	new	model	are	then	 	and	 .	Since	 ,	the
first	equation	tells	us	that	 .	We	plug	this	information	into	the	second	equation	and	solve
for	b:

The	result	is	 .

We	now	plug	in	our	values	for	a	and	b	to	get	the	Ricker	model	for	growth	rate	as	a	function	of
population:

Hence	the	discrete	dynamical	system	for	the	Ricker	model	is

In	this	DDS	the	leading	 	cancels	to	give	us	the	slightly	simpler	version:



E.17	Exponential	and	Logarithmic	Functions
Implementing	the	Ricker	model	in	Excel	requires	the	use	of	two	of	Excel’s	built-in
mathematical	functions:	the	exponential	function	and	the	natural	logarithm.	The	syntax	for
raising	the	number	e	to	a	power	is	“=EXP(number),”	while	the	natural	logarithm	of	a
number	is	written	as	“=LN(number).”	The	formula	version	of	our	Excel	Ricker	model	is
given	in	Figure	5.32	with	stand-in	values	for	the	intrinsic	growth	rate	and	carrying
capacity.

FIGURE	5.32	Ricker	Excel	model	setup.

Salmon	populations	are	particularly	well	suited	for	discrete	models	because	salmon	have
nonoverlapping	generations.	The	size	of	any	particular	generation	then	depends	on	the	size	of
the	previous	generation.	In	fact	it	was	trying	to	predict	salmon	populations	that	originally	led
Ricker	to	develop	his	model	(Ricker,	1954).	In	the	next	example	we	apply	Ricker’s	model	to	a
salmon	population	using	parameter	values	estimated	in	Ricker	Salmon	Model	(Phaser,	2015).
These	parameter	estimates	are	based	on	approximately	30	years	of	salmon	population	data
collected	by	the	US	Army	Corps	of	Engineers	at	the	John	Day	Dam	(U.S.	Army	Corps	of
Engineers,	2004).



Example	5.17:

Use	the	Ricker	model	to	project	a	salmon	population	over	the	next	15	years	if	the
population	starts	at	150,000.	Assume	 	and	 .

Once	we	input	the	relevant	parameters,	we	need	to	drag	our	model	down	to	year	15	and
observe	the	results.	The	model	predicts	that	the	salmon	population	will	grow	to	477,598
fish,	which	is	very	near	carrying	capacity.	A	graph	for	the	population	is	provided	in
Figure	5.33.

FIGURE	5.33	Ricker	model	projections	for	salmon	population	at	John	Day	Dam.

We	note	that	for	these	particular	parameter	values,	the	carrying	capacity	once	again	appears	to
be	a	stable	equilibrium.	We	verify	that	the	carrying	capacity	is	in	fact	always	an	equilibrium
for	the	Ricker	model	in	the	next	section.

5.5.1	Equilibrium	Analysis
To	find	any	equilibrium	values,	we	must	solve	the	following	for	 :

We	must	either	have	 	(extinction)	or	 	in	which	case	we	divide	both	sides	by	 	to
see	that	we	must	solve



Moving	the	exponential	over,	we	get

Taking	the	natural	logarithm	of	both	sides	yields

The	end	result	is	 .

We	have	shown	that	just	like	the	discrete	logistic	model,	the	only	equilibrium	values	for	the
Ricker	model	are	when	the	population	is	extinct	or	at	its	carrying	capacity.

5.5.2	Section	Exercises

1.	 Use	the	Ricker	model	to	project	the	salmon	population	from	Example	5.17	over	20	years	if
the	population	starts	at	50,000.

2.	 Determining	the	maximum	sustainable	yield	based	on	the	Ricker	model	is	more
complicated	than	it	is	for	the	discrete	logistic	model.	However,	while	the	MSY	for	the

Ricker	model	will	not	occur	at	a	population	equal	to	exactly	 ,	the	value	 	will	produce	a
good	approximation.	For	the	salmon	fishery	in	Example	5.17,	approximate	the	MSY	based
on	the	Ricker	model.

3.	 Extension:	Modify	the	Ricker	model	to	include	constant	take	harvesting	using	the	MSY
from	Exercise	2.	Investigate	the	effects	of	this	harvesting	level	by	projecting	the	fate	of
several	different	initial	salmon	populations.

4.	 Extension:	Modify	the	Ricker	model	to	include	constant	effort	harvesting	using	the	MSY
from	Exercise	2.	Investigate	the	effects	of	this	harvesting	level	by	projecting	the	fate	of
several	different	initial	salmon	populations.

5.	 Extension:	Show	that	under	a	constant	effort	harvesting	level	of	e,	the	Ricker	model’s
positive	equilibrium	value	becomes

Note	the	similarity	with	the	constant	effort	harvesting	equilibrium	for	the	discrete	logistic
model.

6.	 Extension:	The	Ricker	model	fixed	a	shortcoming	of	the	discrete	logistic	model	by
ensuring	that	the	growth	rate	for	the	model	never	falls	below	−1.	Ricker	used	an
exponential	function	to	accomplish	this,	but	others	have	suggested	different	functions.	One



famous	example	is	known	as	the	Beverton–Holt	model.	In	the	Beverton–Holt	model,	a

rational	function	of	the	form	 	where	a	and	b	are	constants	is	used	in	place	of	an
exponential	to	prevent	a	growth	rate	less	than	−1:

a.	 Find	appropriate	constants	a	and	b	for	the	Beverton–Holt	model	by	requiring	that	the
growth	rate	is	r	when	the	population	is	0	and	that	the	growth	rate	is	0	when	the
population	is	at	the	carrying	capacity,	K.

b.	 Give	the	DDS	for	the	Beverton–Holt	model	and	implement	it	in	Excel.

c.	 Find	the	equilibrium	values	for	the	Beverton–Holt	model.

d.	 Compare	population	projections	for	the	Beverton–Holt	and	Ricker	models	for	the
salmon	fishery	in	Example	5.17.



6	
BLOOD	ALCOHOL	CONCENTRATION	AND
PHARMACOKINETICS
The	study	of	the	course	of	a	drug	as	it	is	administered,	absorbed,	and	eliminated	from	the	body
is	known	as	pharmacokinetics.	In	this	chapter	we	build	pharmacokinetic	models	for
predicting	the	amount	of	drug	in	the	body	over	time	with	a	special	focus	on	commonly	used
drugs	such	as	alcohol,	ibuprofen,	and	caffeine.	We	begin	with	the	example	of	blood	alcohol
concentration	(BAC)	before	providing	a	general	model	that	can	be	used	for	many	different
drugs.

6.1	BLOOD	ALCOHOL	CONCENTRATION
Blood	alcohol	concentration	(BAC)	is	a	measure	of	how	much	alcohol,	specifically	ethanol,
is	in	the	body.	When	alcohol	is	ingested,	it	moves	rapidly	through	the	stomach	to	the	small
intestine.	Since	alcohol	is	water	soluble,	it	is	absorbed	from	the	small	intestine	into	the	body
water	where	it	quickly	becomes	evenly	distributed	throughout	the	body.

For	many	drugs,	alcohol	included,	the	concentration	of	the	drug	in	the	body	is	more	important
than	the	total	amount	present	because	larger	bodies	need	more	of	the	drug	in	order	to	achieve
the	same	effect.	A	300-pound	NFL	lineman,	for	example,	will	feel	much	different	after	four
beers	than	a	150-pound	person	would.

To	calculate	BAC,	we	proceed	in	stages:	(i)	we	calculate	the	amount	of	alcohol	ingested,	(ii)
we	estimate	the	amount	of	water	a	person’s	body	contains,	(iii)	we	calculate	the	concentration
of	alcohol	in	the	body	water	by	dividing	the	amount	of	alcohol	by	the	amount	of	water,	and	(iv)
we	deduce	the	concentration	of	alcohol	in	the	blood	in	light	of	the	fact	that	blood	is	80.6%
water.

We	note	that	there	are	no	standard	units	for	reporting	BAC.	Different	countries	tend	to	report	it
in	different	ways.	In	the	United	States,	the	most	commonly	used	units	are	grams	of	ethanol	per
deciliter	of	blood,	and	these	are	the	units	we	will	use.

The	question	of	how	much	body	water	a	person	has	is	an	interesting	one	that	depends	on	many
factors	including	weight,	age,	and	sex.	The	amount	of	body	water	helps	explain	observed
differences	in	how	males	and	females	respond	to	the	same	dose	of	alcohol.	Women	in	general
have	a	higher	percentage	of	body	fat	than	men,	and	thus	they	tend	to	have	less	body	water	than
men	even	when	their	body	weight	is	the	same.	Thus	a	dose	of	alcohol	will	typically	produce	a
higher	BAC	in	a	woman	than	in	a	man	of	the	same	weight.	As	a	result,	women	tend	to	feel	more
intoxicated	than	men	when	consuming	the	same	amount	of	alcohol.	We	proceed	with	an
example	of	how	a	basic	BAC	calculation	is	done.



Example	6.1:

Mark	is	a	180-pound	male	who	quickly	consumes	two	12-oz.	beers.	Estimate	Mark’s
BAC.

We	assume	that	all	of	the	alcohol	from	the	two	beers	is	quickly	emptied	from	Mark’s
stomach	and	distributed	uniformly	in	his	total	body	water.

First	we	need	to	know	how	much	alcohol,	in	grams,	Mark	consumed.	A	standard	12-oz.
beer	contains	about	14 g	of	alcohol	(as	do	a	5-oz.	glass	of	wine	or	1.5-oz.	shot	of	80-
proof	liquor),	so	our	subject	has	approximately	28 g	of	alcohol	in	his	body	water.

Next	we	need	to	calculate	how	much	body	water	a	180-pound	male	typically	has.	In	the
absence	of	more	specific	information,	we	use	standard	average	values	for	body	water
percentage.	On	average	males	are	58%	water,	while	females	are	49%	water.	The	lower
percentage	of	body	water	for	females	is	due	primarily	to	their	typically	higher	levels	of
body	fat,	which	contains	little	water,	versus	muscle,	which	contains	a	lot	of	water.	As	we
will	see	later,	there	are	more	sophisticated	formulas	for	determining	more	precise
estimates	for	body	water	percentage	based	on	height,	weight,	sex,	and	age.	For	now
though	we	have	enough	information	to	estimate	the	Mark’s	BAC.

1.	 Begin	with	body	weight	in	pounds,	and	change	the	body	weight	to	kilogram	(1 kg = 
2.2046	pounds):

2.	 Using	typical	sex	percentages,	find	total	body	water	volume	(1 l	of	water	weighs	1 kg)
by	multiplying	body	weight	by	body	water	percentage:

3.	 Calculate	the	concentration	of	alcohol	in	the	body	water	by	dividing	total	amount	of
alcohol	by	total	body	water:

4.	 Using	the	fact	that	blood	is	80.6%	water,	calculate	BAC	from	body	water
concentration:

5.	 Convert	our	BAC	into	the	appropriate	units,	which	in	the	United	States	are	typically



grams	of	ethanol	per	deciliter	of	blood.	There	are	10	deciliters	(dl)	in	a	liter,	so	we
have

Note	that	BAC	levels	are	often	reported	as	a	%	even	though,	strictly	speaking,	they	are	not
true	percentages.	Thus	we	would	report	Mark’s	BAC	to	be	0.048%.

We	see	in	the	previous	example	that	our	subject	is	well	below	the	standard	legal	limit	for
driving,	which	is	0.08%.	We	should	also	regard	this	first	estimate	as	conservative	since	we
assumed	that	all	of	the	alcohol	from	the	two	beers	was	absorbed	instantaneously	into	the	body
water.	In	reality	some	of	that	alcohol	would	have	already	been	metabolized	as	the	drinks	were
being	consumed.

In	Excel	we	create	a	basic	BAC	calculator	similar	to	ones	available	online	by	having	the	user
input	sex,	body	weight	in	pounds,	and	number	of	standard	drinks	consumed.	The	spreadsheet
will	then	have	to	use	the	correct	body	water	percentage	and	carry	out	the	calculations
necessary	to	report	an	estimate	for	the	individual’s	BAC.	In	creating	the	spreadsheet,	we	take
advantage	of	some	features	in	Excel	that	allow	us	to	control	the	type	of	input	a	user	can
provide.

E.18	Data	Validation
In	many	of	our	spreadsheet	models,	we	ask	the	user	to	input	some	or	all	of	the	parameter
values	we	use	in	our	calculations.	Adding	drop-down	menus	in	Excel	is	a	great	way	of
adding	some	sophistication	to	the	spreadsheet	while	at	the	same	time	ensuring	that	the	user
inputs	are	exactly	what	we	require.	For	example,	if	we	ask	the	user	to	type	her	or	his	sex
into	an	empty	cell,	we	may	get	several	different	responses—“Female,”	“female,”	“F,”	“f,”
etc.—and	that	variety	can	make	later	calculations	based	on	sex	difficult.	Similarly,	if	we
want	to	limit	user	input	to	whole	numbers,	we	do	not	want	the	user	to	be	able	to	enter
“2.4.”	The	way	we	deal	with	these	issues	in	Excel	is	known	as	“Data	Validation.”	With
Data	Validation	we	can	limit	the	kind	of	input	that	a	cell	will	accept,	or	we	can	create	a
drop-down	menu	for	a	cell	so	that	the	user	must	choose	from	a	provided	list	of	given
inputs.

Example	6.2:

Use	Data	Validation	to	limit	a	cell’s	input	to	whole	numbers	between	0	and	10.

Suppose	we	want	a	user	to	input	a	whole	number	between	0	and	10	into	cell	B5.	We
click	on	cell	B5	and	from	the	Data	Tools	group	under	the	Data	tab	we	select	“Data
Validation.”	Figure	6.1	shows	the	dialog	box	that	appears.



FIGURE	6.1	Data	Validation	dialog	box.

Under	“Allow”	we	select	“Whole	number,”	under	“Data”	we	select	“between,”	and
in	the	boxes	for	“Minimum”	and	“Maximum”	we	enter	0	and	10,	respectively.	After
clicking	“Okay”	we	check	our	work.	If	we	enter	the	value	“7”	into	cell	B5,	note	that
nothing	happens.	However,	if	we	try	to	enter	“7.5,”	we	get	the	error	message	shown
in	Figure	6.2.	The	same	message	appears	if	we	try	to	enter	a	value	outside	the
specified	range.



FIGURE	6.2	Data	Validation	error	message.

The	Data	Validation	dialog	box	also	provides	options	for	us	to	customize	the	feedback
that	the	user	receives	when	clicking	on	a	cell	that	requires	specific	input.	The	“Input
Message”	allows	us	to	provide	guidance	to	the	user	as	to	what	kind	of	input	the	cell
requires;	this	message	will	appear	whenever	the	cell	is	selected.	The	“Error	Alert”	is	the
message	that	will	appear	if	the	user	attempts	to	enter	the	wrong	kind	of	input.

If	B5	is	the	cell	where	the	user	must	enter	the	number	of	drinks	consumed,	our	input
message	might	be	entitled	“Number	of	Drinks”	and	read	“Please	enter	a	whole	number
between	0	and	10.”	In	case	of	an	invalid	entry,	our	error	alert	could	be	set	with	title
“Invalid	Number	of	Drinks”	and	message	“The	entry	for	this	cell	must	be	a	whole	number
between	0	and	10.”

Another	type	of	data	validation	involves	setting	up	a	drop-down	menu	for	a	cell	so	that	the
user	must	select	one	of	the	entries	provided.

Example	6.3:

Create	a	drop-down	menu	for	cell	B5	that	forces	the	user	to	choose	“M”	for	male	and
“F”	for	female.

Here	we	go	back	to	Data	Validation,	but	this	time	we	select	“Allow:	List”	under
Settings.	We	have	a	couple	choices	now.	In	the	“Source:”	line	we	can	simply	list	the
options	we	want	to	appear,	separated	by	commas,	such	as	“M,	F.”	Alternatively	we
can	store	the	choices	as	a	list	elsewhere	in	our	spreadsheet	and	select	the	range	of
values	under	Source.	The	second	way	is	more	work	but	allows	for	easier	editing
later	if	we	want	to	update	the	list.	The	setup	for	the	first	option	is	shown	in	Figure
6.3.



FIGURE	6.3	Creating	a	drop-down	menu	for	sex.



FIGURE	6.4	Data	Validation	drop-down	menu	for	sex.

Once	entered	cell	B5	will	now	display	a	drop-down	menu	icon	for	the	user	to	click
whenever	B5	is	selected.	Figure	6.4	shows	the	result	of	a	user	clicking	on	the	drop-
down	menu	for	sex.

We	are	now	ready	to	create	a	basic	BAC	calculator.	We	collect	all	of	our	parameters	together
at	the	top	of	the	spreadsheet	and	apply	whatever	limits	we	want	to	impose	on	the	inputs	using
Data	Validation.	In	this	case	the	only	restriction	is	on	sex,	and	we	use	a	drop-down	menu	to
control	that	as	in	the	previous	example.	Our	setup	is	shown	in	Figure	6.5.



FIGURE	6.5	Basic	BAC	calculator	setup.

Next	we	need	to	calculate	the	user’s	BAC	based	on	the	given	inputs.	This	is	a	matter	of
following	the	calculations	from	Example	6.1	and	getting	Excel	to	carry	them	out.	One
complication	is	that	we	need	to	use	the	correct	body	water	percentage	based	on	the	user’s	sex.
We	take	care	of	this	with	an	“IF”	statement	of	the	form	“IF(user	is	male,	use	0.58,	else	use
0.49).”	With	sex	stored	in	cell	C4,	the	exact	syntax	is	“IF(C4 = “M”,0.58,0.49).”	The	full
formula	version	of	the	calculator	is	provided	in	Figure	6.6.

FIGURE	6.6	Basic	BAC	calculator	formula.

As	a	quick	verification	that	the	spreadsheet	is	working	properly,	we	enter	the	parameters	from
Example	6.1	and	note	that	we	do	in	fact	get	 	.	Figure	6.7	shows	this	result.



FIGURE	6.7	BAC	calculator	result	confirmation	for	Example	6.1.

In	Table	6.1	we	present	some	typical	effects	of	alcohol	at	various	BAC	levels	collected	from	a
variety	of	sources	(see	CDC,	2015a;	Clemson	Redfern	Health	Center,	2015).



TABLE	6.1	The	Effects	of	Alcohol	at	Given	BAC

BAC Effects
0.02–0.03 Mild	relaxation,	mild	euphoria,	some	loss	of	judgment,	decline	in	ability	to

multitask
0.04–0.06 Lowered	inhibition,	feeling	of	euphoria,	emotions	intensified,	impaired

judgment,	impaired	coordination,	loss	of	reflexes
0.08	(legal	limit
for	driving)

Impaired	balance,	impaired	judgment,	loss	of	self-control,	loss	of
concentration,	poor	speed	control	and	perception	while	driving

0.10–0.125 Poor	reaction	time	and	control,	slurred	speech,	poor	coordination,	inability
to	maintain	lane	position	while	driving

0.13–0.15 Further	loss	of	muscle	control	and	balance,	possible	vomiting,	substantial
impairment	of	ability	to	control	vehicle

0.16–0.19 Possible	vomiting,	drinker	appears	very	drunk
0.20 Vomiting,	blackouts,	inability	to	stand	or	walk	without	assistance,	increased

likelihood	of	injury,	risk	of	choking	on	vomit
0.30–0.35 Stupor,	passing	out,	coma	possible,	death	possible
0.40 Coma,	death	likely

In	Example	6.1	we	see	that	Mark	will	likely	experience	lowered	inhibition	and	euphoria,	but
he	will	also	exhibit	some	loss	of	coordination	and	impaired	judgment.

In	the	next	section	we	incorporate	the	effects	of	time	on	BAC.

6.1.1	Section	Exercises

1.	 Scott	is	a	200-pound	man	who	consumes	five	standard	glasses	of	wine.	Estimate	Scott’s
BAC.

2.	 Chris	is	a	120-pound	woman	who	consumes	four	12-oz.	beers.	Estimate	her	BAC	assuming
all	of	the	consumed	alcohol	is	in	her	body.

3.	 Anna	is	a	150-pound	woman.	Determine	how	many	standard	drinks	she	can	consume	and
still	remain	below	the	legal	driving	limit	for	BAC.

4.	 Seth	is	a	250-pound	man.	Determine	how	many	standard	drinks	he	can	consume	and	still
remain	below	the	legal	driving	limit	for	BAC.

5.	 Extension:	Jeff	is	a	180-pound	man	who	consumes	two	1.5-oz.	drinks	of	100-proof	Scotch.
Estimate	his	BAC.	You	may	use	the	fact	that	the	mass	density	of	alcohol	is	23.3 g	per	fluid
ounce.

6.	 Extension:	Joan	is	a	170-pound	woman	who	consumes	three	16-oz.	IPAs.	If	the	IPA	is	8%
alcohol	by	volume,	estimate	Joan’s	BAC.	You	may	use	the	fact	that	the	mass	density	of



alcohol	is	23.3 g	per	fluid	ounce.

7.	 Calculate	your	own	BAC	after	having	two	drinks	of	your	choosing.

8.	 Extension:	Find	better	estimates	for	total	body	water	based	on	parameters	such	as	age,
weight,	sex,	etc.	and	incorporate	them	into	the	basic	BAC	calculation	spreadsheet	in	place
of	the	values	based	on	the	average	percentages	of	58%	for	men	and	49%	for	women.

9.	 Extension:	Using	the	body	water	percentage	estimate	from	Exercise	8,	estimate	your	BAC
after	having	the	two	drinks	you	used	in	Exercise	7.	How	much	difference	did	the	body
water	percentage	estimate	make	for	the	BAC	calculation?

10.	 Extension:	Use	the	BAC	calculator	spreadsheet	to	compare	the	effects	of	quickly
consuming	4	standard	drinks	for	an	average	male	US	college	student	and	an	average	female
US	college	student.

6.2	THE	WIDMARK	MODEL
The	basic	calculations	from	the	previous	section	provide	a	way	for	us	to	get	a	rough	estimate
of	a	person’s	BAC.	However,	these	kinds	of	calculations	suffer	from	being	static—they	only
give	us	BAC	at	one	moment	in	time.	They	also	make	use	of	questionable	assumptions:	that	all
consumed	alcohol	is	present	in	the	body,	and	that	the	alcohol	is	instantly	distributed	throughout
the	blood.	In	this	section	we	go	a	step	further	and	present	our	first	discrete	dynamical	system
(DDS)	model	for	predicting	BAC	over	time:	the	Widmark	model.

In	1932	Widmark	developed	a	single-compartment	model	for	predicting	BAC	over	time	that
has	become	the	most	widely	used	and	cited	BAC	model	due	to	its	simplicity	and	its	accuracy
for	a	large	percentage	of	the	population	(Heck,	2007).	Here	we	present	the	Widmark	model;	in
later	sections	we	discuss	ways	the	model	may	be	improved.

As	soon	as	alcohol	is	consumed,	it	begins	to	be	removed	from	the	body	primarily	by
metabolism	in	the	liver.	A	small	percentage	of	the	alcohol	is	excreted	by	passing	from	the	body
unchanged	via	the	breath,	sweat,	and	urine;	another	small	percentage	is	metabolized	in	the
stomach	(Kent,	2012).	The	Widmark	model	does	not	differentiate	among	these	different
pathways;	instead	it	treats	the	body	as	a	single	compartment	and	it	treats	excretion	and
metabolism	as	a	single	elimination	process	leading	to	an	overall	constant	rate	of	decrease	in
BAC.

Once	consumed,	alcohol	diffuses	rapidly	through	the	body	water	and	hence	the	blood.
Widmark	estimated	that	the	rate	at	which	alcohol	is	then	cleared	from	the	body	results	in	a
decrease	in	BAC	of	about	0.017	each	hour,	or	 	per	min.	This	rate	of
elimination	varies	from	individual	to	individual,	and	it	can	range	from	0.010	to	0.040	per	h
with	lower	values	typical	for	those	who	do	not	regularly	consume	alcohol	and	higher	values
for	heavy	drinkers	(NHTSA,	1994).	In	other	words,	heavy	drinkers	tend	to	metabolize	alcohol
more	quickly	than	others.	The	average	value	for	a	heavy	drinker	is	an	approximate	0.020
decrease	in	BAC	per	hour	(NHTSA,	1994).



Since	the	Widmark	model	assumes	the	rate	of	change	for	BAC	is	a	constant	that	does	not
depend	on	the	amount	of	alcohol	present,	we	say	that	the	Widmark	model	uses	zero-order
elimination	for	alcohol.	The	flow	diagram	for	the	Widmark	model	is	given	in	Figure	6.8.

FIGURE	6.8	Widmark	model	flow	diagram.

Our	DDS	for	BAC	is	thus	 	,	where	time	is	measured	in
minutes	since	the	last	drink.	The	initial	BAC	is	calculated	as	in	the	previous	section.

The	fact	that	BAC	is	decreasing	by	a	constant	amount	means	that	there	will	be	no	equilibrium
values	for	the	model.	To	verify	this	we	can	attempt	to	solve	for	 	in	the	equation	

	.	Subtracting	 	from	both	sides	results	in	the	false	statement	
	so	we	have	no	solution.

The	Excel	implementation	of	the	Widmark	model	is	relatively	straightforward	once	we	have
the	basic	BAC	calculator	from	the	previous	section.	We	can	modify	that	spreadsheet	slightly	so
that	the	BAC	calculation	appears	as	our	initial	BAC.	Then	we	get	Excel	to	subtract	0.000283
from	the	previous	BAC	each	minute.	The	formula	version	of	the	model	is	shown	in	Figure	6.9.

FIGURE	6.9	Widmark	Excel	model	formula.

Note	we	have	used	the	average	elimination	rate	of	0.017	per	h	in	our	model.	In	the	exercises
the	reader	is	invited	to	modify	this	rate	to	account	for	the	user’s	drinking	habits.	We	end	this
section	with	a	computational	example.



Example	6.4:

Suppose	Angela	is	a	140-pound	female	who	has	five	drinks	over	a	relatively	short	time.
Use	the	Widmark	model	to	project	Angela’s	BAC	over	time	and	estimate	how	long	it	will
be	before	she	is	legally	able	to	drive.

Once	we	have	the	Widmark	model	set	up,	we	need	to	input	Angela’s	parameters	and	then
drag	the	formulas	down	far	enough	for	Angela’s	BAC	to	drop	below	0.08.	The	results	of
our	projection	are	shown	in	Figure	6.10	with	most	of	the	rows	hidden.

FIGURE	6.10	Widmark	model	projection	for	Example	6.4.

The	Widmark	projections	show	Angela’s	BAC	starting	at	0.181.	Note	that	according	to
Table	6.1	Angela	will	be	very	drunk	at	this	BAC	level.	She	will	likely	experience	a
substantial	decrease	in	muscle	control,	possible	vomiting,	and	substantial	impairment	in



her	ability	to	operate	a	vehicle.	The	model	projects	that	it	will	take	Angela’s	BAC	6 h
from	the	cessation	of	drinking	to	drop	below	the	legal	limit	for	driving.	If	we	project
Angela’s	BAC	far	enough	into	the	future,	we	end	up	with	negative	values	for	her	BAC
after	about	10.5 h.	This	of	course	does	not	make	physical	sense.

The	last	example	highlights	a	major	flaw	in	the	Widmark	model:	if	we	project	BAC	far	enough
into	the	future,	we	will	always	end	up	with	negative	values	for	BAC.	In	the	next	section	we
present	a	model	that	addresses	this	issue.

6.2.1	Section	Exercises

1.	 Give	an	explicit	formula	for	the	Widmark	model.

2.	 Implement	the	Widmark	model	in	Excel.	Allow	the	user	to	input	sex,	number	of	drinks
consumed,	and	body	weight	as	parameters	in	the	model.

3.	 Use	Excel’s	Data	Validation	feature	to	have	the	Widmark	Excel	model	use	different
elimination	rates	based	on	user-selected	drinking	habits.	In	particular,	use	a	drop-down
menu	to	allow	the	user	to	select	light,	moderate,	or	heavy	drinker	and	have	the	BAC
calculation	use	the	corresponding	elimination	rate.

4.	 Diana	is	a	160-pound	woman	who	consumes	five	standard	glasses	of	wine.

a.	 Use	the	Widmark	Excel	model	to	estimate	her	initial	BAC.

b.	 Estimate	how	long	it	will	take	before	Diana	is	legally	able	to	drive.

5.	 Use	your	own	parameters	and	drink	of	choice	to:

a.	 Estimate	your	initial	BAC.

b.	 Estimate	how	long	it	will	take	before	you	are	legally	able	to	drive.

6.	 Reveal	a	shortcoming	of	the	Widmark	model	by	projecting	BAC	over	a	long	period	of
time.	Explain	why	the	results	are	a	problem.

7.	 Extension:	Graph	the	Widmark	model	BAC	projections	over	time	for	parameters	of	your
choosing.	On	the	Excel	graph,	include	horizontal	lines	marking	the	BAC	levels	for	the	legal
driving	limit,	drunkenness,	coma,	and	death.

8.	 Extension:	Make	the	Widmark	Excel	model	more	flexible	by	allowing	users	to	input
nonstandard	drinks.

6.3	THE	WAGNER	MODEL
Though	the	Widmark	model	is	still	widely	used	today,	it	does	have	some	clear	problems.	One
issue	is	that	the	assumption	of	a	constant	decrease	in	BAC	over	time	leads	to	projections	of
negative	BAC	concentrations,	which	are	not	physically	meaningful.



In	1972	Wagner	and	Patel	improved	the	Widmark	model	by	modifying	the	elimination	rate	to
behave	in	a	more	realistic	way	(Wagner	&	Patel,	1972).	Rather	than	a	constant	rate	of	decrease
in	BAC,	the	Wagner	model	assumes	that	the	rate	at	which	alcohol	is	cleared	depends	on	how
much	alcohol	is	in	the	body.	For	high	BAC	levels,	the	body’s	ability	to	eliminate	alcohol	is
overwhelmed	to	the	point	that	the	elimination	rate	appears	to	be	constant;	we	denote	the	body’s
maximum	BAC	elimination	rate	by	 	.	However,	at	low	BAC	levels,	the	elimination	rate
will	be	roughly	proportional	to	the	BAC	level.	Unlike	the	Widmark	model,	the	Wagner	model
takes	into	account	the	elimination	rate’s	dependence	on	BAC.	In	this	way	the	Wagner	model
avoids	predicting	negative	BACs.

The	kind	of	rate	dependence	assumed	by	Wagner	is	known	as	Michaelis–Menten	kinetics,	one
of	the	most	common	models	for	enzyme	kinetics.	The	basic	formula	for	the	rate	of	alcohol
elimination	under	Michaelis–Menten	(M–M)	kinetics	is	given	by

Here	 	is	the	maximum	removal	rate	for	alcohol	in	grams	per	deciliter	per	minute,	and	
is	a	parameter	representing	the	BAC	(in	grams	per	deciliter)	at	which	the	removal	rate	for
alcohol	would	be	one	half	of	 	.	Values	for	the	M–M	parameters,	 	and	 	,	vary	among
individuals,	and	the	Wagner	model	can	be	customized	to	an	individual	by	determining	their
personal	 	and	 	based	on	their	own	BAC	measurements	(e.g.,	by	using	a	breathalyzer).
In	the	absence	of	specific	individual	values,	we	use	population	averages	that	can	be	found	in
the	literature	just	as	we	do	for	body	water	percentage.

Examining	the	M–M	equation,	we	use	some	algebra	to	see	that	it	can	be	rewritten	as

In	this	form	we	can	see	that	if	we	have	a	very	large	BAC,	then	the	term	 	will	be	close	to
zero,	and	the	rate	of	elimination	will	be	close	to	(but	not	quite)	 	,	that	is,	we	will	have
near	constant,	or	zero	order,	maximal	elimination.	We	also	note	that	for	very	low	BAC	levels,

the	factor	 	will	be	approximately	equal	to	 	;	hence	for	low	BAC	levels,	we	have

roughly	exponential	decline	at	the	rate	of	 	.

Finally	we	note	that	if	the	BAC	equals	 	,	then	the	elimination	rate	is

In	other	words,	when	BAC	reaches	 	,	the	rate	of	elimination	is	one	half	the	maximum	value
as	the	definition	of	 	states.

With	 	and	 	left	as	parameters	to	be	determined	later,	we	have	the	flow	diagram	given	in



Figure	6.11.

FIGURE	6.11	Wagner	model	flow	diagram.

The	corresponding	DDS	for	the	model	is	thus

When	we	implement	the	Wagner	model	in	Excel,	the	main	change	to	the	Widmark	model	is	to
replace	the	constant	elimination	rate,	0.000283,	with	the	more	complicated	elimination	rate
represented	by	M–M	kinetics.	We	store	the	parameters	 	and	 	in	their	own	cells	for	easy
experimenting	later.

As	noted	earlier	the	parameters	 	and	 	vary	among	individuals,	but	we	can	use	average
values	that	will	be	accurate	for	large	segments	of	the	population.	Lewis	in	1986	found	average
values	for	 	and	 	based	on	the	values	given	in	several	studies	(Lewis,	1986).	He	found	

	and	 	.	Using	Lewis’s	values	for	 	and	 	,	the	Excel
Wagner	formula	is	displayed	in	Figure	6.12.



FIGURE	6.12	Wagner	Excel	model	formula.

We	end	this	section	with	a	computational	example.

Example	6.5:

With	the	same	parameter	values	as	Example	6.4,	use	the	Wagner	model	to	project	how
long	it	will	take	before	Angela	is	legally	able	to	drive.	How	does	the	Wagner	projection
compare	to	Widmark’s?

As	before	we	need	to	copy	the	model	formulas	down	until	Angela’s	BAC	falls	below
0.08.	As	the	output	in	Figure	6.13	shows,	the	Wagner	model	predicts	that	it	will	take
approximately	5 h	before	Angela’s	BAC	falls	below	0.08.



FIGURE	6.13	Wagner	model	projection	for	Example	6.5.

Compared	to	the	Widmark	model,	the	Wagner	model	appears	to	assume	a	higher	typical
rate	of	alcohol	elimination	than	the	Widmark	model	because	it	takes	1 h	less	for	Angela’s
BAC	to	fall	below	the	legal	limit.	Also,	unlike	the	Widmark	model,	the	Wagner	model
will	not	give	us	negative	values	for	Angela’s	BAC	regardless	of	how	far	into	the	future
we	project	it.



In	the	next	section	we	highlight	another	important	difference	between	the	Wagner	and	Widmark
models:	the	presence	of	an	equilibrium	value.

6.3.1	Equilibrium	Analysis
Intuitively	we	know	that	once	drinking	ends	BAC	should	reach	an	equilibrium	value	of	0.	The
Widmark	model	fails	on	this	account	since	it	has	no	equilibrium	values.	The	Wagner	model,	on
the	other	hand,	does	exhibit	an	equilibrium	value	at	0.	We	have

Thus	either	 	or	 	.	Since	 	is	a	nonzero	constant,	our	only	equilibrium
value	occurs	when	 	,	or	when	all	alcohol	has	been	eliminated	from	the	body.
Furthermore,	since	all	initial	BAC	levels	eventually	revert	to	0	once	drinking	has	stopped,	the
equilibrium	at	0	is	a	stable	one.

6.3.2	Determining	V	max	and	K	m	from	Data

Breathalyzers	measure	alcohol	in	the	breath,	but	they	are	calibrated	so	that	the	output	is
reported	in	the	same	units	as	BAC,	grams	of	ethanol	per	deciliter	of	blood.	With	a	breathalyzer
we	can	collect	real	data	from	which	we	can	estimate	personal	values	for	 	and	 	.	We
illustrate	one	approach	to	this	kind	of	estimation	in	the	following	example	using	data	collected
by	the	author.

Example	6.6:

The	author	is	a	180-pound	male	who	consumed	the	equivalent	of	one	and	two	thirds
drinks	very	quickly	and	then	used	a	breathalyzer	to	measure	his	BAC	periodically
afterward.	The	author’s	BAC	data	is	given	in	Table	6.2.	During	the	period	of
measurement,	no	other	food	or	drink	was	consumed.	Find	the	parameters	 	and	 	that
produce	the	best	fit	in	the	Wagner	model.



TABLE	6.2	Breathalyzer	BAC	Data

Minutes	from	End	of	Drinking BAC
20 0.032
30 0.029
40 0.027
85 0.015
95 0.013
115 0.010
135 0.006

Here	we	fit	the	model	visually	with	trial	and	error	on	the	two	parameters	 	and	 	.
To	do	so	we	must	plot	the	BAC	data	from	Table	6.2	and	the	Wagner	model	projections	on
the	same	axes.	In	Excel	we	make	a	third	column	for	“BAC-Data”	and	input	the
breathalyzer	values	in	this	new	column	next	to	the	appropriate	times.	(Note	that	this	is	the
same	technique	we	used	for	the	Eyam	plague	example	in	Chapter	4.)	Once	the	data	is
entered,	we	graph	as	usual,	selecting	the	data	column	along	with	the	model	projections.
The	resulting	graph	is	shown	in	Figure	6.14.

FIGURE	6.14	Wagner	model	projection	compared	to	data	using	standard	parameter
values	for	Example	6.6.

Note	that	the	standard	parameter	values	for	the	Wagner	model	already	result	in	a	good	fit



with	the	data.	Through	experimenting	with	different	values,	we	can	obtain	a	slightly	better
fit	for	the	data	if	we	let	 	and	 	.	The	graph	with	these	parameter
choices	is	shown	in	Figure	6.15.

FIGURE	6.15	Wagner	model	projection	compared	to	data	with	visually	determined
parameters	for	Example	6.6.

In	the	next	section	we	improve	on	the	Wagner	model	by	incorporating	a	more	realistic
approach	to	how	alcohol	is	typically	consumed.

6.3.3	Section	Exercises

1.	 Implement	the	Wagner	model	in	Excel.	Allow	the	user	to	input	sex,	number	of	drinks
consumed,	and	body	weight	as	parameters	in	the	model.	Store	 	and	 	in	their	own
cells	for	easy	experimentation	later.

2.	 Diana	is	a	160-pound	woman	who	consumes	five	standard	glasses	of	wine.

a.	 Use	the	Wagner	Excel	model	to	graph	a	projection	of	her	BAC	over	time.

b.	 Estimate	how	long	it	will	take	before	Diana	is	legally	able	to	drive.

3.	 Use	the	Wagner	model	with	your	own	parameter	choices	to:

a.	 Graph	a	projection	of	your	BAC	over	time.



b.	 Estimate	how	long	it	will	take	before	you	are	legally	able	to	drive.

4.	 Extension:	Graph	the	Wagner	model	BAC	projections	over	time	for	parameters	of	your
choosing.	On	the	Excel	graph,	include	horizontal	lines	marking	the	BAC	levels	for	the	legal
driving	limit,	drunkenness,	coma,	and	death.

5.	 Extension:	Make	the	Wagner	Excel	model	more	flexible	by	allowing	users	to	input
nonstandard	drinks.

6.	 In	a	DUI	court	case,	a	defendant’s	BAC	is	measured	at	the	scene	of	an	accident	as	0.12.
The	defendant	is	a	220-pound	man	who	is	known	to	have	stopped	drinking	2 h	before	being
tested.	Use	the	Wagner	model	to	estimate	how	many	drinks	the	defendant	had.

7.	 In	a	DUI	court	case,	a	defendant’s	BAC	is	measured	at	the	scene	of	an	accident	as	0.05.
The	defendant	is	a	120-pound	woman	who	is	known	to	have	stopped	drinking	3 h	before
being	tested.	At	the	time	of	the	accident,	she	had	been	driving	for	30 min.	Use	the	Wagner
model	to	determine	whether	she	is	guilty	of	DUI.

8.	 For	parameter	values	of	your	choosing,	compare	the	long-term	projections	for	BAC	for	the
Widmark	and	Wagner	models.

9.	 Compare	the	average	maximal	elimination	rate	for	the	Wagner	model	with	the	average
elimination	rate	for	the	Widmark	model.

6.4	ALCOHOL	CONSUMPTION	PATTERNS
With	both	the	Widmark	and	the	Wagner	models,	our	BAC	projections	are	conservative	in	the
sense	that	we	assume	all	alcohol	that	has	been	consumed	is	in	the	body	at	once	and	then	the
BAC	declines	as	time	passes	from	the	cessation	of	drinking.	This	will	tend	to	overestimate
BAC	because	the	body	actually	starts	eliminating	alcohol	as	soon	as	drinking	starts:	having
four	beers	in	10 min	should	certainly	result	in	a	higher	BAC	than	four	beers	over	2 h,	but	with
our	current	models,	the	BAC	estimates	would	be	the	same.

In	this	section	we	incorporate	a	more	realistic	approach	that	accounts	for	the	body
metabolizing	alcohol	as	soon	as	drinking	starts	and	allows	the	user	to	control	both	the	number
of	drinks	and	the	time	period	over	which	drinking	takes	place.

As	a	first	step	we	consider	the	incorporation	of	a	constant	drinking	rate	like	“1	beer	every
hour”	or	“2	glasses	of	wine	per	hour.”	This	rate	plays	a	similar	role	to	the	stocking	number	we
considered	in	Chapter	1.	We	interpret	a	rate	like	“1	beer	per	h”	to	mean	that	the	beer	is
consumed	uniformly	over	the	hour	as	opposed	to	a	beer	being	quickly	consumed	and	then	an
hour	elapsing	before	the	next	one.

Incorporating	a	drinking	rate	into	our	model	requires	that	we	are	careful	with	our	units.	If	the
user	is	drinking	at	a	rate	of	1	drink	per	h,	we	cannot	simply	add	“1”	to	our	DDS.	Instead	we
need	to	know	the	corresponding	increase	in	BAC	that	one	drink	causes	for	the	user,	and	then
we	need	to	convert	that	to	a	BAC	increase	per	minute.	The	conversion	from	number	of	drinks
per	hour	to	increase	in	BAC	per	minute	depends	on	the	parameters	for	the	user	and	involves



using	our	basic	BAC	calculator.	We	show	the	details	in	the	examples	that	follow.

For	now	we	let	d	represent	the	drinking	rate	as	an	increase	in	BAC	each	minute.	The	flow
diagram	for	the	Wagner	model	with	drinking	rate	is	given	in	Figure	6.16.

FIGURE	6.16	Flow	diagram	for	the	Wagner	model	with	constant	drinking	rate.

The	corresponding	DDS	is	thus

To	implement	the	model	in	Excel,	we	ask	the	user	to	estimate	their	drinking	rate	by	inputting
the	number	of	drinks	per	hour	they	typically	consume.	The	spreadsheet	then	calculates	d,	the
increase	in	BAC	each	minute	based	on	the	user	inputs.	The	setup	with	the	formula	for	d
displayed	is	given	in	Figure	6.17.

FIGURE	6.17	Excel	formula	for	converting	drinking	rate	to	increase	in	BAC.

To	implement	the	DDS,	we	begin	with	a	BAC	of	0	and	then	add	d	to	the	DDS	from	the	original
Wagner	model.	The	new	formula	is	shown	in	Figure	6.18.



FIGURE	6.18	Excel	formula	for	Wagner	model	with	constant	drinking	rate.

As	an	example	we	consider	the	following.



Example	6.7:

Vincent	is	a	210-pound	male	who	drinks	3	beers	per	h.	Project	Vincent’s	BAC	at	the	end
of	4 h	using	the	modified	Wagner	model.

We	need	to	input	Vincent’s	parameters	and	copy	the	formulas	down	to	 	.	The	result
with	most	rows	hidden	is	shown	in	Figure	6.19.

Vincent’s	BAC	after	4 h	will	be	0.169	so	he	will	be	very	impaired.

FIGURE	6.19	Excel	model	BAC	projection	for	Example	6.7.

6.4.1	Equilibrium	Analysis	and	Maintaining	a	Buzz



We	noted	in	previous	sections	that	the	Widmark	model	has	no	equilibrium	values,	and	the
Wagner	model	has	only	the	trivial	equilibrium	value	of	0.	The	inclusion	of	a	constant	drinking
rate	is	more	interesting	because	it	introduces	a	nontrivial	equilibrium.

To	find	the	equilibrium	value,	we	need	to	solve	the	following	for	 	:

Subtracting	 	from	both	sides	and	moving	the	negative	term	to	the	left-hand	side	give	us

Next	we	multiply	through	by	 	to	get	 	.	Multiplying
through	by	d	on	the	right	and	collecting	like	terms	give	us	 	so	that	our
final	result	is

The	result	tells	us	that	if	our	drinking	rate	is	less	than	the	maximal	elimination	rate,	 	,	then
we	will	get	a	nonzero	equilibrium	value	that	depends	on	the	drinking	rate	and	the	user-
specified	values	for	 	and	 	.	On	the	other	hand,	if	the	drinking	rate	exceeds	the	maximal
elimination	rate,	then	we	do	not	expect	a	physically	meaningful	equilibrium	value.	Instead
BAC	will	just	continue	to	increase	over	time.

In	the	next	example	we	show	how	to	use	the	formula,	and	we	verify	it	with	our	Excel	model.



Example	6.8:

Suppose	Katherine	is	a	167-pound	female	who	has	1	drink	every	2 h,	or	about	0.5	drinks
per	h.	Find	Katherine’s	long-term	BAC	level	assuming	average	values	for	the	Wagner
parameters.

First	we	need	to	determine	d.	We	do	this	by	plugging	Katherine’s	parameter	values	into
our	spreadsheet	and	observing	the	value	for	d	that	corresponds	to	Katherine	having	half	a
drink	per	hour.	We	get	 	.	According	to	our	formula	for	the	equilibrium
value,	Katherine’s	equilibrium	BAC	is

We	can	confirm	this	value	by	inputting	0.019	as	Katherine’s	initial	BAC	and	noting	that
her	BAC	would	then	remain	constant.	We	can	also	show	that	with	Katherine’s	parameter
choices	the	equilibrium	value	at	0.019	is	stable	and	thus	represents	her	long-term	BAC.
To	see	this	we	start	Katherine	with	a	BAC	of	0	and	drag	the	model	down	far	enough	to	see
her	BAC	stabilize	at	0.019.	A	graph	of	her	projected	BAC	along	with	her	equilibrium
value	is	presented	in	Figure	6.20.	Note	that	Katherine’s	BAC	starts	below	the	equilibrium
value	but	tends	toward	it	over	time.

FIGURE	6.20	Excel	model	projection	with	equilibrium	value	for	Example	6.8.



In	the	previous	example	it	takes	a	very	long	time—around	14 h—for	Katherine’s	BAC	to	level
off	at	the	equilibrium	value,	certainly	far	longer	than	we	typically	expect	someone	to	be
drinking.	For	this	reason	in	practice,	we	should	think	of	the	equilibrium	value	as	a	cap,	or
maximum	value	for	BAC,	not	necessarily	a	level	that	will	be	reached.	This	assumes	an	initial
BAC	below	the	equilibrium	value;	the	situation	will	be	different	if	the	BAC	starts	above	it.

In	the	next	example	we	take	a	closer	at	a	drinking	pattern	that	is	commonly	referred	to	as
“maintaining	a	buzz.”

Example	6.9:

Ned	is	a	200-pound	male	who	wants	to	drink	steadily	in	order	to	maintain	a	“buzzed”
feeling	without	becoming	drunk.	Using	average	values	for	the	Wagner	parameters,
estimate	how	many	drinks	per	hour	Ned	should	have.

Though	it	is	difficult	to	pick	a	specific	BAC	that	corresponds	to	feeling	buzzed,	typically
this	feeling	corresponds	to	a	BAC	between	0.04	and	0.06.	In	this	example	we	will	use	a
BAC	of	0.05	as	the	“target”	for	Ned.	The	idea	is	to	determine	d	that	would	lead	to	an
equilibrium	value	of	 	for	Ned.

First	we	take	the	time	to	solve	the	problem	in	the	general	case	by	isolating	d	in	the
equilibrium	value	formula.	We	get

Thus	if	we	know	the	equilibrium	value,	we	find	d	by

In	our	current	example	we	have

Once	we	know	that	 	,	we	can	solve	for	the	number	of	drinks	per	hour	that
produces	this	d	for	Ned.	We	can	do	this	algebraically,	with	trial	and	error	in	Excel,	or	by
using	Goal	Seek.	We	show	the	Excel	setup	for	the	Goal	Seek	calculation	in	Figure	6.21.



FIGURE	6.21	Goal	Seek	setup	for	determining	number	of	drinks	per	hour	from	increase
in	BAC.

The	results	of	a	successful	Goal	Seek	inform	us	that	Ned	needs	to	drink	about	0.88	drinks
per	h	in	order	for	him	to	eventually	achieve	and	maintain	a	BAC	of	about	0.05.



E.19	Setting	the	Error	Tolerance	for	Goal	Seek
If	in	the	previous	example	Goal	Seek	was	unsuccessful,	it	may	be	due	to	the	error
tolerance	setting	for	Goal	Seek—the	tolerance	at	which	Goal	Seek	decides	the	result	is
“close	enough.”	The	default	setting	for	this	tolerance	is	0.001,	which	is	not	small	enough
to	give	us	the	precision	we	need	in	the	last	example.

To	change	the	setting	select	Options	from	the	File	drop-down,	then	choose	Formulas.	The
dialog	box	should	appear	as	in	Figure	6.22.	Under	Calculation	Options	change	the
Maximum	Change	to	0.000001,	and	click	“Okay.”	If	Goal	Seek	is	rerun,	then	it	should	find
the	value	given	in	Example	6.9.

FIGURE	6.22	How	to	change	error	tolerance	for	Goal	Seek.

In	the	previous	example	the	target	BAC	was	0.05.	While	it	is	true	that	Ned’s	BAC	will
eventually	rise	to	0.05	if	he	drinks	long	enough,	it	will	take	much	longer	than	is	practically
reasonable,	in	this	case	more	than	28 h.	If	his	goal	is	really	to	get	to	a	BAC	of	0.05	and	then
stay	there,	Ned	will	have	to	take	a	different	approach.	We	explore	that	approach	in	the	next



example.

Example	6.10:

With	the	parameters	from	the	previous	example,	determine	a	drinking	pattern	that	will
start	Ned	at	a	BAC	of	0.05	and	keep	him	there.

What	we	need	here	is	sometimes	called	a	“loading	dose”	when	discussing	other	drugs.
The	idea	is	to	drink	enough	alcohol	initially	to	get	the	BAC	up	to	0.05	quickly	and	then
continue	drinking	at	the	rate	found	in	Example	6.9.

To	find	the	number	of	drinks	required	to	quickly	get	Ned’s	BAC	to	0.05,	first	we	modify
our	model	to	include	a	“loading	dose,”	which	we	will	call	the	initial	number	of	drinks.

We	insert	a	row	where	we	store	the	initial	number	of	drinks;	then	for	our	initial	BAC
value,	we	calculate	the	BAC	that	results	from	that	number	of	drinks.	The	setup	with	the
formula	for	initial	BAC	is	displayed	in	Figure	6.23.

FIGURE	6.23	Wagner	Excel	model	including	an	initial	“loading	dose.”

Next	we	use	Goal	Seek	to	find	the	number	of	initial	drinks	that	results	in	a	BAC	of	0.05
for	Ned.	The	result	of	this	Goal	Seek	is	about	2.33	drinks.	With	an	initial	 	drinks
consumed	quickly,	Ned	will	raise	his	BAC	to	0.05.	Then	if	he	continues	to	consume
alcohol	at	0.88	drinks	per	h,	his	BAC	will	stay	at	0.05,	and	he	will	maintain	his	buzz.

Before	embarking	on	a	model-designed	drinking	pattern,	there	are	a	couple	of	very	important
considerations	to	take	into	account.	The	first	is	that,	generally	speaking,	one	cannot	“go	back”



when	trying	to	maintain	a	buzzed	feeling.	What	this	means	is	that	if	one	accidentally	overshoots
the	BAC	target	and	begins	to	experience	unpleasant	effects	from	the	alcohol,	then	decreasing
the	BAC	to	0.05	will	not	make	one	feel	better.	As	a	result,	one	should	only	approach	BAC
targets	from	below,	that	is,	a	conservative	approach	is	best.

The	second	practical	consideration	is	that	this	kind	of	maintenance	drinking	is	very	difficult	to
put	into	practice	accurately,	and	even	missing	by	a	little	bit	can	dramatically	change	the	end
result.	We	explore	this	fact	in	the	next	example.

Example	6.11:

Suppose	Ned	initially	consumes	 	drinks	so	that	his	BAC	starts	at	0.05,	but	then	rather
than	consuming	0.88	drinks	per	h	he	actually	consumes	1	drink	per	h.	Examine	the
consequences	of	this	small	departure	from	the	plan.

Though	it	may	seem	insignificant,	consuming	1	drink	per	h	instead	of	0.88	drinks	per	h
changes	the	drinking	rate	to	 	.	Thus	the	equilibrium	value	changes	from	

	to

Instead	of	maintaining	a	pleasant	feeling	of	mild	euphoria,	Ned’s	BAC	will	continue	to
rise	(albeit	very	slowly)	to	0.258,	a	level	that	causes	passing	out,	memory	blackouts,
stupor,	and	severe	motor	impairment.	If	the	BAC	level	reaches	slightly	higher,	0.30,	death
can	occur.

The	moral	of	this	series	of	examples	is	that	while	it	may	be	possible	to	maintain	a	BAC	level
that	leads	to	pleasant	side	effects,	it	is	very	difficult	to	carry	out	in	practice—who	is	going	to
measure	out	0.88	drinks	every	hour?	Furthermore,	the	consequences	of	drinking	even	slightly
more	than	called	for	over	time	can	lead	to	dangerous	BAC	levels.

The	mathematical	description	of	the	phenomenon	we	just	observed	is	that	the	equilibrium	for
BAC	is	sensitive	to	changes	in	the	drinking	rate.	If	we	consider	the	formula	for	 	,	we	can
see	why.	The	denominator	for	that	formula	is	the	term	 	.	Thus	as	the	drinking	rate
approaches	 	,	the	denominator	of	the	 	formula	approaches	0,	which	in	turn	causes	the

	to	grow.	We	emphasize	the	point	with	the	next	example.



Example	6.12:

Natalie	is	a	130-pound	female.	Find	the	difference	in	the	drinking	rates	required	for	her	to
maintain	her	BAC	at	0.05	versus	0.10.

Using	the	same	method	as	in	Example	6.9,	we	find	a	drinking	rate	of	0.484	drinks	per	h
for	an	eventual	BAC	level	of	0.05	and	a	drinking	rate	of	0.522	drinks	per	h	to	maintain	a
BAC	of	0.08.	Thus	a	difference	as	small	as	 	drinks	(about	1/2 oz.	of
beer)	per	hour	could	lead	to	twice	the	eventual	BAC	for	Natalie.

Again	we	emphasize	that	the	idea	of	drinking	just	the	right	amount	to	maintain	a	buzz	can	be	an
attractive	one;	however,	the	Wagner	model	indicates	that	it	is	very	difficult	to	accomplish	in
practice	without	accidentally	overdoing	it.

In	the	next	section	we	recognize	that	people	do	not	tend	to	drink	indefinitely.	We	need	a	way	to
turn	off	consumption	in	our	model.

6.4.2	Turning	Off	Drinking
So	far	we	have	handled	the	consumption	part	of	our	model	in	one	of	two	ways:	by	assuming	all
drinking	has	already	taken	place	and	all	alcohol	consumed	is	still	in	the	body	or	by	assuming	a
constant	drinking	rate	that	continues	indefinitely.	Neither	of	these	approaches	is	completely
satisfactory,	though,	because	they	do	not	fully	capture	how	most	drinking	takes	place.

In	this	section	we	make	an	improvement	on	how	we	handle	consumption	by	allowing	the	user
to	specify	the	number	of	drinks	consumed,	denoted	by	N,	as	well	as	the	time	period	(in
minutes)	over	which	the	consumption	takes	place.	We	denote	the	time	spent	drinking,	or
drinking	time,	by	 	,	and	our	assumption	is	that	drinking	occurs	uniformly	over	the	time
period	given.

Once	the	user	has	input	the	number	of	drinks	and	the	time	period,	the	drinking	rate	over	that

time	is	given	by	 	.	Then	the	parameter,	d,	will	be	the	corresponding	per-
minute	increase	in	BAC,	which	we	get	Excel	to	calculate	as	before.	The	difference	now	lies	in
the	fact	that	we	stop	adding	d	to	our	model	as	soon	as	the	drinking	period	is	over.	We	illustrate
the	modification	to	our	model	in	the	next	example.

Example	6.13:

Natalie	from	Example	6.12	has	five	glasses	of	wine	over	a	2-h	period.	Project	her	BAC
over	time.

Here	the	time	spent	drinking	is	120 min	so	we	need	to	turn	off	Natalie’s	consumption	at	
	.	There	are	several	ways	to	go	about	this	in	Excel,	including	the	method	used	in



Chapter	3	when	dealing	with	combat	models.	We	create	an	“IF”	statement	that	serves	as	a
kind	of	“on/off	switch.”	Instead	of	adding	d	at	every	time	step,	we	use	an	IF	statement	that
only	adds	 	while	drinking	is	still	happening.	In	Excel	the	syntax	is	roughly	“IF( 	,	d,
0).”	We	show	the	modified	Excel	setup	in	Figure	6.24.

FIGURE	6.24	Wagner	Excel	model	setup	with	finite	drinking	time.

The	new	formula	for	BAC	is	given	in	Figure	6.25.

FIGURE	6.25	Wagner	Excel	model	BAC	formula	with	finite	drinking	time.

With	all	parameters	correctly	entered,	we	graph	Natalie’s	BAC	over	12 h.	Figure	6.26
shows	the	result.

Note	how	after	2 h	Natalie’s	BAC	stops	rising	and	begins	to	fall.	This	indicates	we	have
succeeded	in	turning	off	her	drinking	at	the	appropriate	time.	Her	BAC	peaks	at	about
0.156,	and	about	3 h	and	45 min	later	it	falls	below	the	legal	driving	limit.	It	takes	about
11 h	for	all	of	the	alcohol	to	leave	her	system.



FIGURE	6.26	Natalie’s	projected	BAC	over	time	for	Example	6.13.

The	Wagner	model	is	an	improvement	over	the	Widmark	model	in	that	it	more	accurately
models	the	elimination	of	alcohol	from	the	body.	However,	the	Wagner	model	shares	with	the
Widmark	model	two	oversimplifications.	Both	models	treat	the	body	as	a	single	reservoir	from
which	alcohol	is	eliminated	by	a	single	process,	and	both	models	assume	that	all	alcohol	is
instantly	absorbed	and	distributed	throughout	the	body	water.

In	reality	there	are	several	pathways	by	which	alcohol	is	eliminated	or	metabolized,	and	each
one	of	these	pathways	can	serve	as	inspiration	for	the	refinement	of	our	model.	For	example,
one	of	the	largest	sources	of	variability	in	BAC	stems	from	the	rate	of	gastric	emptying,	that	is,
the	rate	at	which	alcohol	moves	from	the	stomach	to	the	small	intestine.	Factors	affecting
gastric	emptying	include	the	type	of	drink	(carbonated	vs.	uncarbonated,	high	alcohol	vs.	low)
and	whether	the	stomach	is	full	or	empty	(Kent,	2012).	Furthermore,	some	alcohol	is	actually
metabolized	in	the	stomach	before	it	ever	reaches	the	blood.	We	could,	therefore,	include
compartments	for	the	stomach	and	the	small	intestine.	We	would	then	need	to	estimate
parameters	for	the	rate	of	gastric	emptying,	the	rate	at	which	alcohol	is	metabolized	in	the
stomach,	and	the	rate	of	absorption	from	the	small	intestine	into	the	blood.	J.E.	Pieters	in	1990
and	D.M.	Umulis	(whose	model	also	includes	compartments	for	the	liver	and	body	muscle)	in
2005	both	developed	such	models	(Pieters,	Wedel,	&	Schaafsma,	1990;	Umulis,	Gurman,
Singh,	&	Fogler,	2005).	In	1998	M.D.	Levitt	took	a	different	approach	and	proposed	a	two-
compartment	model	that	treats	the	liver	as	a	separate	compartment	from	the	rest	of	the	body
(Levitt	&	Levitt,	1998).

As	indicated	above,	the	BAC	models	we	present	in	this	chapter	only	scratch	the	surface	of
what	is	possible.	The	more	we	come	to	understand	about	alcohol	metabolism,	the	more	factors
we	can	incorporate	into	the	model.



6.4.3	Section	Exercises

1.	 Toni	is	a	170-pound	woman	who	drinks	3	standard	drinks	per	hour.	Project	Toni’s	BAC	at
the	end	of	4 h	using	the	modified	Wagner	model.

2.	 Suppose	Conrad	is	a	140-pound	male	who	has	1	drink	every	3 h.	Find	Conrad’s	long-term
BAC	level	assuming	average	values	for	the	Wagner	parameters.

3.	 Using	average	values	for	the	Wagner	parameters,	estimate	how	many	drinks	per	hour	you
would	need	to	have	in	order	to	maintain	a	BAC	level	of	0.045.

4.	 Approximately	how	long	will	it	take	in	Exercise	3	for	your	BAC	level	to	get	close	to	the
0.045	“target?”

5.	 What	would	the	loading	dose	need	to	be	in	order	for	you	to	quickly	raise	your	BAC	to
0.045?

6.	 Produce	an	Excel	graph	that	shows	that	with	the	loading	dose	you	found	in	Exercise	5	and
the	drinking	rate	you	found	in	Exercise	3,	your	BAC	would	remain	constant	at	0.045.

7.	 In	Exercise	3	suppose	you	accidentally	drink	20%	more	per	hour	than	your	calculated	rate.
Find	the	resulting	long-term	BAC.	Explain	the	significance	of	this	result.

8.	 Suppose	you	drink	six	standard	beers	over	a	5-h	period	and	then	stop.

a.	 Use	the	Wagner	model	to	estimate	your	peak	BAC	level.

b.	 Determine	how	long	it	will	be	until	you	are	legally	able	to	drive.

c.	 Determine	approximately	how	long	it	will	be	until	all	alcohol	has	left	your	system.

9.	 Extension:	In	the	same	manner	as	we	did	for	the	Wagner	model,	incorporate	a	drinking	rate
and	drinking	time	into	the	Widmark	Excel	model.	Compare	this	modified	Widmark	model
with	the	modified	Wagner	model	for	parameter	values	of	your	choosing.

6.5	MORE	GENERAL	DRUG	ELIMINATION
As	soon	as	a	drug	is	ingested,	the	body	begins	to	eliminate	it.	This	can	happen	through
metabolism,	where	enzymes	break	down	the	drug	into	different	metabolites,	or	it	can	happen
through	excretion,	where	the	drug	is	passed	out	of	the	body	through	the	breath,	sweat,	or	urine.
In	this	section	we	will	not	make	a	distinction	between	these	two	processes,	opting	instead	to
make	the	simplifying	assumption	that	treats	both	possibilities	together	as	a	single	process	that
we	call	elimination.	It	may	become	necessary	or	expedient	later	to	consider	metabolism	and
excretion	separately,	but	for	now	our	goal	is	to	keep	our	model	as	simple	as	possible.

For	most	drugs	at	usual	dosages,	elimination	takes	place	at	a	rate	that	is	a	constant	proportion
of	the	amount	of	drug	present	in	the	body.	This	kind	of	elimination	process	is	called	first-order
elimination.	In	contrast	a	drug	that	is	eliminated	by	a	constant	amount	for	each	time	step	is
said	to	undergo	zero-order	elimination.	Many	common	drugs,	including	ibuprofen	and
caffeine,	undergo	first-order	elimination.	Alcohol	is	an	example	of	a	drug	that	is	well	modeled



by	zero-order	elimination	(as	in	the	Widmark	model),	at	least	for	relatively	high	amounts	of
alcohol	in	the	body.	In	this	section	we	focus	on	first-order	elimination.

Though	the	context	is	different,	we	should	recognize	first-order	elimination	as	an	exponential
decay	model.	If	we	let	 	be	the	amount	of	drug	in	the	body	at	time	t	and	let	r	be	the
elimination	rate,	then	we	have	the	familiar	flow	diagram	in	Figure	6.27.

FIGURE	6.27	Flow	diagram	for	first-order	single-compartment	drug	elimination.

The	corresponding	DDS	is	then	 	.	With	 	equal	to	the	initial
amount	of	drug	in	the	body,	we	should	have	no	problem	now	setting	up	an	Excel	model	or
explicit	formula	to	model	the	amount	of	drug	remaining	in	the	body	over	time.	The	primary
difficulty	we	face	is	in	finding	a	value	r	for	a	given	drug.

6.5.1	Drug	Half-Life
Drug	manufacturers	are	required	to	report	what	is	known	as	the	half-life	of	a	drug,	which	is	the
time	it	takes	the	body	to	eliminate	one	half	of	the	drug.	Thus	if	a	drug	has	a	reported	half-life	of
4 h	and	initially	500 mg	of	the	drug	is	present	in	the	body,	there	will	be	250 mg	in	the	body	4 h
later,	125 mg	4 h	after	that,	and	so	on.	We	use	the	symbol	 	to	denote	the	half-life.	Our	job	as
modelers	is	to	deduce	the	rate	of	elimination,	r,	from	the	half-life.	We	have	done	this	sort	of
thing	before	when	we	deduced	the	growth	rate	for	a	population	of	deer	from	its	doubling	time.
The	next	example	shows	how	we	can	deduce	the	elimination	rate	from	the	half-life	by	using	the
explicit	formula.



Example	6.14:

The	half-life	for	the	pain	reliever	ibuprofen	is	approximately	2 h	(RxList,	2015).
Determine	r,	the	approximate	percentage	of	the	drug	that	is	eliminated	from	the	body	each
minute.

We	use	the	explicit	formula	for	the	exponential	model	where	t	is	time	in	minutes	and	
is	the	amount	of	ibuprofen	in	milligrams	still	present	in	the	body	at	time	t.	Our	explicit
formula	is	 	.	By	definition	if	 	is	the	half-life	of	ibuprofen,	then	

	where	 	is	the	initial	amount	of	ibuprofen	in	the	body.	Thus	with
a	half-life	of	120 min,	we	have

Thus	 	.	As	a	percent	we	have	an	elimination	rate	for	ibuprofen	of	
per	min.	Note	that	the	initial	amount	of	drug	present	did	not	matter	in	our	calculation	of	r.

Generalizing	the	previous	example	we	see	that	we	can	always	do	a	similar	calculation
whenever	we	know	the	half-life:

Because	we	will	always	have	to	perform	this	calculation	before	proceeding	with	our	model,	it
makes	sense	to	get	Excel	to	automate	the	process.	In	the	next	example	we	set	up	an	Excel



worksheet	that	models	a	first-order	elimination	process.	The	spreadsheet	will	allow	the	user	to
input	a	drug’s	half-life	from	which	it	will	compute	the	appropriate	elimination	rate
automatically.

Example	6.15:

Project	the	amount	of	ibuprofen	remaining	in	the	body	over	the	course	of	8 h	if	initially
500 mg	is	present	and	no	new	doses	are	administered.

E.20	Exponents

In	order	to	get	Excel	to	calculate	an	elimination	rate	from	the	half-life,	we	need	to
work	with	exponents.	Excel	uses	the	caret	symbol	“ ”̂	for	exponentiation.	So	in	order
to	calculate	“2	raised	to	the	4th	power,”	we	type	“=2^4”	in	Excel.

To	find	the	elimination	rate	from	the	half-life,	we	need	store	the	half-life	in	its	own
cell,	say,	cell	C3,	and	in	the	cell	where	we	want	the	elimination	rate,	we	type	“=1 − 
0.5 (̂1/C3).”	The	setup	with	formulas	showing	is	given	in	Figure	6.28.

FIGURE	6.28	Determining	elimination	rate	from	half-life	in	Excel.

As	a	quick	check	we	enter	the	half-life	for	ibuprofen	and	verify	that	we	get	the	same
result:	 	.	The	result	of	our	computation	is	given	in	Figure	6.29.

FIGURE	6.29	Excel	result	for	determining	elimination	rate	from	half-life.



With	the	elimination	rate	in	hand,	setting	up	the	rest	of	the	spreadsheet	should	be
familiar.	We	show	the	setup	with	formula	for	 	displayed	in	Figure	6.30.

FIGURE	6.30	Excel	setup	for	first-order	single-compartment	drug	elimination.

After	dragging	down	the	model	to	 	,	we	graph	our	results	in	Figure	6.31.	Note
that	the	graph	displays	the	typical	shape	for	an	exponential	decrease.

FIGURE	6.31	Projected	ibuprofen	level	over	time.

6.5.2	Variations	on	Half-Life



Occasionally	a	drug’s	elimination	rate	will	be	reported	in	a	nonstandard	way.	In	an
experimental	study,	for	example,	drug	levels	may	only	be	taken	every	30 min.	In	such	a	case	it
is	natural	to	report	the	percentage	eliminated	every	30 min	rather	than	giving	a	half-life.
Fortunately,	as	long	as	we	know	what	percentage	has	been	eliminated	over	a	given	time	span,
we	can	still	find	r.

Example	6.16:

Suppose	we	know	that	75%	of	a	drug	is	eliminated	every	10 min.	Find	the	elimination
rate,	r.

If	75%	of	the	drug	is	eliminated	in	10 min,	we	know	we	will	have	25%	of	the	drug
remaining	after	10 min.	Thus	whatever	the	initial	drug	amount,	 	,	we	will	have	

	.	Solving	for	r	gives	us

Thus	as	a	percent	we	have	an	elimination	rate	of	 	per	min.

Automating	this	kind	of	calculation	in	Excel	is	left	as	an	exercise.

6.5.3	Absorption
The	model	in	the	preceding	section	assumed	the	body	was	a	single	compartment,	and	we
focused	on	the	elimination	of	the	drug	from	the	body.	For	drugs	that	are	administered	via	direct
injection	or	intravenously,	a	single-compartment	model	makes	sense	because	the	drug	is
instantly	present	in	the	blood.	However,	many	drugs,	especially	over-the-counter	drugs,	are
administered	orally.

Drugs	taken	orally	do	not	instantly	enter	the	bloodstream;	they	must	be	digested	first.	This
means	we	need	to	take	into	account	how	quickly	the	drug	is	absorbed	into	the	body	from	the
gastrointestinal,	or	GI,	tract.	To	model	absorption	we	add	the	GI	tract	as	a	second	compartment
considered	as	separate	from	“the	body,”	or	central	compartment,	and	we	introduce	a	new
parameter,	the	absorption	rate,	into	the	model.

Let	 	be	the	amount	of	drug	in	the	GI	tract	at	time	t,	and	let	α	be	the	absorption	rate.	We
assume	that	absorption	from	the	GI	tract	into	the	body	is	a	first-order	process	so	that	
represents	the	fixed	percentage	of	the	drug	being	absorbed	into	the	body	at	each	time	step.	The
two-compartment	model	is	pictured	in	Figure	6.32.



FIGURE	6.32	Two-compartment	pharmacokinetic	model	flow	diagram.

The	corresponding	DDS	for	the	two-compartment	model	is	therefore

The	Excel	spreadsheet	for	the	two-compartment	model	accepts	the	half-life	and	the	absorption
rate	as	parameters,	and	it	calculates	the	elimination	rate	automatically.	The	spreadsheet	with
formulas	displayed	is	given	in	Figure	6.33.

FIGURE	6.33	Two-compartment	Excel	model.

Like	our	elimination	rate	the	absorption	rate	of	a	drug	is	seldom	easy	to	find	directly	in	the
literature.	Instead	we	must	deduce	the	rate	from	the	kind	of	information	that	is	available,	and
there	are	a	variety	of	ways	in	which	the	rate	can	be	reported.	One	common	way	is	to	give	the
drug’s	GI	half-life.	The	GI	half-life	is	the	time	it	takes	one	half	of	the	drug	to	leave	the	GI	tract
and	enter	the	bloodstream.	If	a	GI	half-life	is	given	in	the	literature,	then	we	have	already	seen
how	to	calculate	α:	we	use	the	explicit	formula	for	exponential	decay	and	solve	for	the	α	that
gives	us	1/2	of	the	drug	remaining	in	the	GI	tract	at	the	stated	half-life.

Another	possibility	in	the	literature	is	to	find	a	statement	such	as,	“research	shows	that	95%	of
the	drug	will	enter	the	bloodstream	within	30 min	of	ingestion.”	In	these	situations	we	still	use
the	explicit	formula.



Example	6.17:

Suppose	we	know	from	research	that	95%	of	a	drug	will	be	absorbed	from	the	GI	tract
into	the	bloodstream	within	30 min	of	ingestion.	Find	the	absorption	rate,	α.

The	explicit	formula	for	the	amount	of	drug	remaining	in	the	GI	tract	is	given	by	
	,	where	 	is	the	initial	dose	of	the	drug.	The	way	the	absorption

of	the	drug	is	reported	we	should	have	only	5%	of	the	original	dose	remaining	after	30 
min:	 	.	Thus	we	solve	the	following	for	α:

This	gives	us	 	.

Another	common	way	that	the	absorption	rate	is	reported	is	by	noting	the	time	it	takes	for	a
drug	to	reach	its	peak	plasma	level.	We	denote	this	time	by	 	,	and	it	is	the	time	at	which
the	amount	of	drug	in	the	plasma	is	at	its	highest	following	a	single	dose	of	the	drug
administered	orally.	We	make	the	simplifying	assumption	that	the	peak	plasma	concentration
will	coincide	with	the	peak	amount	in	the	body.	Unfortunately,	unlike	our	process	for	deducing
r	from	the	half-life,	there	is	no	simple	formula	for	finding	α	from	 	.	Instead	we	rely	on	our
Excel	model	and	trial	and	error.	In	other	words,	we	set	up	the	two-compartment	model,	and
then	we	experiment	with	different	absorption	rates	until	we	get	the	highest	point	on	the	
graph	to	occur	at	 	.	We	illustrate	the	process	in	the	next	example	where	we	deduce	the
absorption	rate	from	the	peak	plasma	level	of	ibuprofen.

Example	6.18:

Orally	ingested	ibuprofen	will	reach	its	peak	plasma	level	in	about	1 h	(Jannsen	&
Venema,	1985).	Deduce	the	absorption	rate	of	ibuprofen,	α.

Using	our	two-compartment	model	spreadsheet	and	a	stand-in	value	for	α,	we	make	a
graph	for	 	.	Then	finding	α	is	a	matter	of	experimenting	with	different	values	for	α
until	we	get	the	peak	of	this	graph	to	settle	over	 	min.	In	Figure	6.34	we	show
the	result	for	 	,	which	turns	out	to	be	too	high	because	the	peak	occurs	too	soon	(at
about	30 min).



FIGURE	6.34	Determining	absorption	rate	from	peak	plasma	level.

After	some	experimenting	we	see	that	the	peak	occurs	at	the	appropriate	time	when	
	.	The	graph	is	shown	in	Figure	6.35.	Note	the	time	at	which	the	peak	for	

occurs.

FIGURE	6.35	Absorption	rate	for	peak	plasma	level	at	60 min.

Up	until	now	we	have	dealt	only	with	single	doses	of	a	drug.	In	the	next	section	we	refine	our
two-compartment	model	to	allow	for	multiple	doses.



6.5.4	The	Dosing	Function
Our	models	up	to	this	point—the	single-compartment	and	two-compartment	models—have
been	based	on	the	assumption	that	we	have	a	single	dose	of	the	drug	administered	either	via
injection	(for	the	single-compartment	model)	or	orally	(for	the	two-compartment	model).	We
know	of	course	from	experience	that	most	drugs	are	not	administered	this	way.	Rather,	they	are
generally	administered	on	some	set	schedule	like	“one	pill	every	6 h.”	In	this	section	we
develop	the	mathematical	and	Excel	tools	necessary	to	model	drug	dosages	in	a	way	that	is
flexible	enough	to	account	for	many	commonly	used	regimens.

If	we	let	 	be	the	dosage	of	a	drug	at	time	t,	then	we	call	 	the	dosing	function.	The
graph	of	a	dosing	function	will	be	zero	except	for	the	times	at	which	a	dose	is	administered.	If
a	400-mg	pill	is	administered	every	6 h,	the	graph	of	the	dosing	function	would	appear	as	in
Figure	6.36.

FIGURE	6.36	Example	of	dosing	function	graph.

We	include	the	dosing	function	 	in	our	flow	diagrams	in	Figures	6.37	and	6.38.

FIGURE	6.37	Single-compartment	with	dosing	function	flow	diagram.



FIGURE	6.38	Two-compartment	with	dosing	function	flow	diagram.

The	corresponding	DDS	is	then

for	the	single-compartment	model	(doses	given	via	injection)	and

for	the	two-compartment	model	(doses	given	orally).	The	assumption	in	the	case	of	injection	is
that	the	full	dose	is	instantly	available	in	the	body.	In	the	case	of	oral	administration,	the
assumption	is	that	the	dose	is	immediately	available	in	the	GI	tract,	and	from	there	it	begins	to
be	absorbed	into	the	body.

To	model	a	realistic	dosing	function,	we	need	a	way	to	set	a	repeating	pattern	of	dosages.	For
example,	one	400-mg	pill	every	6 h	should	result	in	a	dosing	function	 	that	is	equal	to	400
whenever	time	is	a	multiple	of	6 h,	and	0	otherwise.

Thinking	of	t	as	representing	hours	from	the	start	of	medication,	we	can	represent	 	as

To	make	further	progress	on	creating	such	a	function	in	Excel,	we	first	need	to	introduce	a	kind
of	arithmetic	known	as	modular	or	clock	arithmetic	that	has	many	important	applications
throughout	mathematics	including	cryptography	and	Internet	security.

6.5.5	Modular	Arithmetic
The	last	version	of	 	above	had	us	adding	400 mg	of	a	drug	whenever	t	is	a	multiple	of	6.
Equivalently,	we	add	a	400-mg	dose	whenever	t	has	a	remainder	of	0	when	divided	by	6.
Arithmetic	that	focuses	on	the	remainder	of	a	division	is	known	as	modular	arithmetic,	also
known	as	clock	arithmetic.	The	basic	idea	in	modular	arithmetic	is	that	when	we	divide	one
whole	number	by	another,	we	care	only	about	the	remainder.	So,	for	example,	if	we	divide	7
by	4	the	remainder	is	3,	and	if	we	divide	11	by	4	the	remainder	is	also	3.	In	modular	arithmetic
we	would	say	7	and	11	are	equivalent	modulo	4	because	they	have	the	same	remainder	when
divided	by	4.	The	numbers	3,	15,	19,	and	23	are	also	equivalent	modulo	4.



More	generally,	the	notation	 	means	“divide	the	number	t	by	the	number	k	and	keep
only	the	remainder.”	Thus	 	and	 	.	Similarly	 	and	

	.

If	we	consider	a	divisor	of	6,	then	dividing	the	first	several	positive	integers	by	6	gives	us

The	important	thing	to	notice	about	the	remainders	is	that	they	form	a	repeating	pattern;	this	is
just	the	sort	of	pattern	we	need	in	order	to	create	a	dosing	function.

Using	modular	arithmetic	with	t	in	hours,	we	write	 	as

If	we	prefer	to	think	of	time	in	minutes,	we	can	change	 	to

Next	we	see	how	to	implement	such	a	function	in	Excel.

E.21	The	MOD	Command
The	“MOD”	function	is	what	Excel	uses	to	perform	modular	arithmetic.	We	know	that	if
we	divide	7	by	3,	we	get	a	remainder	of	1.	In	Excel	this	can	be	computed	by	typing
“=MOD(7,3)”	into	any	cell.	After	hitting	“Enter”	we	see	the	result	“1.”	The	order	of	the
inputs	is	important:	Excel	computes	the	first	number	entered	divided	by	the	second.	Had
we	accidentally	typed	“=MOD(3,7),”	we	would	have	gotten	“3”	as	the	result.	In	Figure



6.39	we	see	a	few	examples	of	the	result	of	the	“MOD”	function	on	a	column	of	time
values	for	several	different	divisors.	Notice	how	the	pattern	of	remainders	repeats	for
each	choice.	It	is	this	repetition	that	we	take	advantage	of	when	constructing	a	dosing
function.



FIGURE	6.39	Results	of	Excel	MOD	function	for	different	divisors.

The	formula	version	for	the	first	three	columns	is	given	in	Figure	6.40.



FIGURE	6.40	Excel	formulas	for	MOD	function	example.

We	are	now	ready	to	incorporate	a	dosing	function	into	our	two-compartment	model	in
Excel.	The	modification	for	the	single-compartment	model	would	be	similar.	We	start	off
by	including	a	place	for	the	user	to	input	the	required	parameter	values.	We	need	the	half-
life	for	elimination	from	the	body,	 	,	the	absorption	rate	from	the	GI	tract,	α,	the
dosage	amount,	d	(typically	in	milligrams),	and	the	dosage	frequency,	or	time	between
doses,	f,	usually	reported	in	hours.	We	also	need	a	new	column	where	we	will	keep	the
dosing	function,	 	.	The	Excel	setup	is	shown	in	Figure	6.41.



FIGURE	6.41	Excel	setup	for	two-compartment	model	with	dosing	function.

Our	time	units	will	be	minutes	so	for	the	dosing	function	we	need	to	add	a	dose	of	d	mg	at
every	time	that	has	a	remainder	of	0	when	divided	by	 	.	An	IF	statement	for	 	in
Excel	will	have	the	following	form:	IF( 	,	add	another	dose	of	d	mg,
otherwise	add	0).	More	precisely	the	Excel	command	will	look	like	“=IF(MOD(t,	60f ) = 
0,	d,	0).”	The	model	with	the	formula	for	 	visible	is	shown	in	Figure	6.42.



FIGURE	6.42	Excel	formula	for	dosing	function.

Figure	6.43	shows	a	graph	of	our	completed	dosing	function	over	a	period	of	12 h.

FIGURE	6.43	Graph	of	Excel	dosing	function	over	12 h.

Next	we	incorporate	the	dosing	function	into	our	two-compartment	model	by	adding	the
column	for	 	to	the	column	for	 	.	The	model	with	the	formula	for	 	showing	is
given	in	Figure	6.44.



FIGURE	6.44	Excel	formula	for	GI	tract	with	dosing	function.

Finally	we	show	how	a	repeated	dosing	schedule	affects	the	amount	of	drug	in	the	body.	Figure
6.45	shows	the	graph	for	 	over	a	period	of	24 h	given	a	400-mg	dose	of	the	drug	every	6 h.



FIGURE	6.45	Model	projection	for	drug	in	the	body	for	400 mg	every	6 h.

Note	that	the	amount	of	drug	in	the	body	does	not	stay	constant.	Rather	it	exhibits	a	kind	of
“sawtooth”	pattern	of	a	sharp	uptick	after	every	new	dose	and	an	exponential	decline	between
doses	as	the	drug	is	eliminated.

In	the	next	example	we	examine	how	repeated	doses	affect	the	amount	of	ibuprofen	in	the	body.



Example	6.19:

Suppose	a	patient	takes	200-mg	doses	of	ibuprofen,	one	every	6 h.	How	much	ibuprofen	is
left	in	the	body	24 h	after	the	first	dose?	Use	minutes	for	the	time	unit.

For	the	basic	model	parameters,	we	know	from	previous	examples	that	 	and	
	.	For	the	dosing	parameters	in	this	example,	we	have	 	,	and	 	.

Once	all	values	are	input	into	Excel,	we	simply	drag	the	model	equations	down	until	we
reach	 	 min.	The	result	is	shown	in	Figure	6.46	with	most	rows	hidden.
We	have	 	 mg	of	ibuprofen	in	the	body.

FIGURE	6.46	Ibuprofen	projections	for	Example	6.19.

As	a	further	refinement	to	our	dosing	function,	the	next	section	considers	the	time	it	takes	for	a
pill	to	dissolve	in	the	stomach	before	it	is	available	to	be	absorbed	into	the	body.



6.5.6	Dissolution
We	know	when	we	take	a	pill	orally	that	it	takes	some	time	for	it	to	dissolve	in	the	stomach,
but	at	the	moment	our	model	assumes	that	the	medicine	is	immediately	available	in	the	GI	tract
for	absorption	into	the	body.	We	make	the	model	for	orally	administered	doses	more	realistic
by	introducing	a	parameter	that	controls	how	long	it	takes	for	a	pill	to	dissolve	in	the	GI	tract.
We	will	call	this	parameter	the	dissolution	time,	and	we	denote	it	by	δ.

For	a	wide	variety	of	drugs,	30 min	is	a	good	approximation	for	how	long	it	takes	a	standard
(i.e.,	not	extended	release)	pill	to	dissolve	(Spitznagel,	1992).	Let	 	.

The	incorporation	of	a	dissolution	time	requires	that	rather	than	having	the	entire	dose
available	instantly	in	the	GI	tract,	we	add	each	dose	a	little	bit	at	a	time	over	the	dissolution
time.	If	we	assume	a	steady	release	for	the	drug,	we	add	 	of	the	dose	each	minute	over
the	 	 min	of	dissolution.	In	the	next	example	we	show	how	to	construct	a	dosing	function
that	takes	dissolution	time	into	account.

Example	6.20:

Suppose	a	drug	with	typical	dissolution	time	is	prescribed	in	pill	form	so	that	the	patient
takes	a	150-mg	pill	once	every	4 h.	Find	the	dosing	function.

For	a	150-mg	pill	with	a	typical	dissolution	time	of	30 min,	the	dosing	function	must	add	
	 mg	of	the	drug	to	the	GI	tract	every	minute	for	30 min	following	ingestion,	and

0	afterward	until	the	next	dose.

With	 	as	the	dosage	frequency	in	hours,	the	dosage	schedule	is	one	pill	every	
	 min.	Thus	every	240 min	a	pill	is	taken,	and	the	pill	takes	30 min	to

completely	dissolve	into	the	GI	tract.	We	arrange	this	in	Excel	by	modifying	the	dosing
function	as	follows:

This	function	adds	5 mg	of	the	drug	per	minute	for	the	30 min	following	ingestion	where
the	30 min	is	from	the	minute	a	dose	is	taken,	 	,	to	29 min	later,	

	.

With	all	parameters	left	as	unknowns,	the	most	general	form	of	our	dosing	function	is	given	by



The	effect	we	see	in	our	model	predictions	should	be	that	the	rise	in	drug	level	in	the	body	is
more	gradual	than	before.	We	include	dissolution	in	the	next	example.

Example	6.21:

Suppose	a	patient	takes	200-mg	caplets	of	ibuprofen,	one	every	6 h.	How	much	ibuprofen
is	left	in	the	body	24 h	after	the	first	dose	if	each	caplet	takes	30 min	to	dissolve?	Use
minutes	for	the	time	unit.

In	Excel	our	spreadsheet	only	needs	to	be	modified	slightly	to	account	for	the	dissolution
parameter	δ.	We	show	the	formula	version	of	the	modification	in	Figure	6.47.

FIGURE	6.47	Excel	model	formula	with	dissolution	time.

For	the	basic	model	parameters,	we	know	from	previous	examples	that	 	and	
	.	For	the	dosing	parameters	in	this	example,	we	have	 	,	 	,	and	

	.	Once	all	values	are	input	into	Excel,	we	drag	the	model	equations	down	until	we
reach	 	 min.	We	see	that	the	model	projects	 	 mg	of
ibuprofen	in	the	body.	In	comparison	with	Example	6.19,	it	appears	that	the	inclusion	of	a
dissolution	time	leads	to	a	slightly	increased	level	at	the	required	time,	37	versus	34 mg.

We	know	that	for	many	drugs	the	dosing	regimen	does	not	continue	indefinitely.	Instead	the
patient	takes	the	drug	over	a	specified	time	period	or	until	a	prescription	runs	out.	Thus	we
need	to	include	a	way	to	turn	off	the	dosing	function,	just	as	we	needed	a	way	to	turn	off
alcohol	consumption	for	the	BAC	model.



6.5.7	Turning	Off	the	Dosing	Function
Our	model	so	far	has	been	set	up	to	handle	either	a	single	dose	of	a	drug	or	a	dosing	regimen
that	continues	indefinitely.	Of	course	in	reality	drugs	are	often	prescribed	only	for	a	specific
time	frame	or	for	a	specific	number	of	doses.	For	example,	a	patient	may	be	given	a	bottle	of
antibiotic	pills	and	directed	to	“take	one	pill	a	day	until	all	pills	have	been	taken.”	In	such
circumstances	we	employ	an	“on/off”	switch	in	Excel	just	as	we	did	when	turning	off	alcohol
consumption.

Here	we	let	N	be	the	total	number	of	doses	to	be	administered;	N	is	stored	in	its	own	cell	and
input	by	the	user.	With	time	in	minutes	and	f	the	time	between	doses	in	hours,	we	know	that	if
we	have	N	total	doses,	the	entire	regimen	(until	just	before	the	next	dose)	will	take	
min	to	complete.	Thus	if	 	,	we	need	to	turn	the	dosing	function	off.	In	Excel	this
can	be	done	with	an	IF	statement:	 	.	If	we	multiply	our	expression	for	
by	this	IF	statement,	then	 	will	be	multiplied	by	1	and	hence	unchanged	until	
,	at	which	time	 	will	be	multiplied	by	0	and	hence	will	be	turned	off.	The	final	version	of
our	dosing	function	with	formula	showing	is	given	in	Figure	6.48.

FIGURE	6.48	Dosing	function	Excel	formula	with	“on/off”	switch	included.

Our	next	example	incorporates	the	“on/off”	switch	into	our	model.



Example	6.22:

Using	the	parameters	from	Example	6.21,	graph	the	amount	of	ibuprofen	in	the	body	over
24 h	if	only	two	doses	are	taken.

With	only	two	doses	the	value	of	our	new	parameter	is	 	.	All	other	parameters
remain	the	same	as	in	the	previous	example.	We	graph	the	results	in	Figure	6.49.

FIGURE	6.49	Ibuprofen	level	over	time	with	only	two	doses.

Note	that	there	are	now	only	two	peaks	for	the	two	doses,	after	which	the	amount	of
ibuprofen	in	the	body	tends	to	0.

In	the	next	section	we	take	a	look	at	some	practical	considerations	that	affect	how	dose
amounts	and	dose	frequencies	are	set.

6.5.8	The	Therapeutic	Window
In	the	previous	section	we	developed	a	very	flexible	dosing	function	and	implemented	it	in
Excel.	With	it	we	can	model	a	wide	range	of	dosing	regimens.	We	have	control	over	the	dose,
the	frequency,	the	total	number	of	doses,	and	the	amount	of	time	each	dose	takes	to	dissolve.

Prescriptions	for	different	drugs	come	with	varying	directions	for	dosage	amounts	and
frequency,	and	it	is	interesting	to	explore	why	this	is.	Why,	for	example,	would	it	be	better	to
take	one	400-mg	pill	every	4 h	rather	than	one	800-mg	pill	every	8 h?	Why	not	100 mg	every
hour?

There	are	lots	of	reasons	for	different	dosing	schedules,	but	one	important	consideration	is	the



therapeutic	window	or	therapeutic	range	for	the	drug.	The	therapeutic	window	is	the	range
of	drug	levels	in	the	body	that	produces	the	desired	effect.	If	a	drug	level	is	too	low,	the
desired	effect	will	not	be	achieved,	but	if	the	drug	level	is	too	high,	there	could	potentially	be
undesirable	side	effects.	Knowing	the	therapeutic	window	helps	determine	how	much	of	the
drug	should	be	administered	with	each	dose	and	how	often	doses	should	be	taken.
The	therapeutic	window	is	often	reported	in	terms	of	plasma	concentration	so	we	need	to	know
how	to	estimate	the	concentration	of	a	drug	in	the	blood	plasma	from	the	amount	present	in	the
body.	In	the	next	section	we	examine	how	to	accomplish	this.

6.5.9	Section	Exercises

1.	 Create	an	Excel	spreadsheet	that	will	automatically	calculate	the	elimination	rate,	r,	from
the	percentage	of	drug	eliminated	over	a	specified	period	of	time.	The	user	should	be	able
to	enter	both	the	percentage	eliminated	and	the	time	period	over	which	it	happens.

2.	 The	half-life	of	the	antidepressant	Zoloft	is	approximately	equal	to	26 h	(RxList,	2015).

a.	 Determine	the	elimination	rate,	r,	for	Zoloft.

b.	 Project	the	amount	of	Zoloft	in	the	body	over	1	week	if	a	single	50-mg	dose	is
administered.

3.	 Suppose	you	know	that	95%	of	a	drug	is	eliminated	in	a	24-h	period.	Determine	the
elimination	rate,	r,	for	the	drug.

4.	 Suppose	we	know	from	research	that	99%	of	a	drug	will	be	absorbed	from	the	GI	tract	into
the	bloodstream	within	45 min	of	ingestion.	Find	the	absorption	rate,	α.

5.	 The	antidepressant	Zoloft	reaches	peak	plasma	concentration	roughly	6 h	after	ingestion
(RxList,	2015).	Determine	the	absorption	rate,	α.

6.	 Suppose	a	patient	takes	200-mg	tablets	of	ibuprofen,	two	every	6 h.	How	much	ibuprofen	is
left	in	the	body	48 h	after	the	first	dose?	Use	minutes	for	the	time	unit	and	the	parameter
values	from	Example	6.19.

7.	 Suppose	a	drug	with	typical	dissolution	time	is	prescribed	in	pill	form	so	that	the	patient
takes	a	300-mg	pill	once	every	6 h.	Find	the	dosing	function.

8.	 Suppose	a	patient	takes	100-mg	caplets	of	ibuprofen,	one	every	4 h.	How	much	ibuprofen
is	left	in	the	body	24 h	after	the	first	dose	if	each	caplet	takes	30 min	to	dissolve?	Use
minutes	for	the	time	unit.

9.	 Extension:	Suppose	a	patient	takes	one	100-mg	pill	of	Zoloft	every	day.	If	each	pill	takes
30 min	to	dissolve,	project	the	amount	of	Zoloft	in	the	body	over	1	week.	Use	hours	as	the
time	unit.

10.	 Using	the	parameters	from	Exercise	8,	graph	the	amount	of	ibuprofen	in	the	body	over	24 h
if	only	three	doses	are	taken.



6.6	THE	VOLUME	OF	DISTRIBUTION
A	complication	when	examining	the	therapeutic	range	of	a	drug	is	that,	like	alcohol,	it	is	not
necessarily	the	amount	of	drug	in	the	body	that	matters,	but	rather	it	is	the	concentration	of
drug	in	the	body.	A	commonly	used	measure	of	drug	concentration	is	the	number	of	micrograms

of	the	drug	present	in	a	milliliter	of	blood	plasma,	that	is,	the	units	of	concentration	are	
or	simply	 	when	the	context	is	understood.	However,	this	measurement	is	equivalent
to	milligrams	(mg)	of	the	drug	per	liter	(l)	of	plasma	so	we	will	use	 	for	our	units.

Unfortunately,	estimating	plasma	concentration	is	not	as	simple	as	dividing	the	amount	of	drug
in	the	body	by	the	individual’s	plasma	volume	because	in	general	drugs	do	not	distribute	only
in	the	blood	plasma.	Rather	they	distribute	throughout	the	body	including	the	organs	and	body
tissues	such	as	muscle	and	fat.	Thus	for	some	drugs	very	little	of	the	drug	is	actually	found	in
the	plasma.	Still,	it	is	much	easier	to	measure	plasma	concentration	with	a	laboratory	test	than,
say,	the	concentration	of	drug	in	the	liver.	For	this	reason	plasma	concentration	is	still	the
preferred	method	of	measuring	drug	levels	in	the	body.	From	the	plasma	concentration	the
concentration	at	other	sites	throughout	the	body	can	be	estimated	based	on	the	known
properties	of	the	drug.

The	fact	that	not	all	of	a	drug	will	end	up	in	the	plasma	introduces	a	complication	for	our
model:	we	wish	to	estimate	the	plasma	concentration,	but	we	cannot	simply	divide	the	amount
of	drug	in	the	body	by	the	amount	of	plasma	in	the	body.	If	we	did	we	would	get	a	potentially
serious	overestimation	because	most	of	the	drug	may	in	fact	be	elsewhere.	What	we	need	is	a
way	to	estimate	the	proportion	of	a	drug	that	is	actually	in	the	plasma.	Once	we	have	that	we
will	be	able	to	estimate	the	plasma	concentration	with	our	model.

In	order	for	us	to	estimate	the	proportion	of	a	drug	that	ends	up	in	the	plasma,	we	introduce	a
fundamental	pharmacological	concept	known	as	the	volume	of	distribution.	The	volume	of
distribution	is	not	an	actual,	physical	volume	in	the	body.	Instead	it	refers	to	the	theoretical
volume	of	plasma	that	would	be	necessary	in	order	for	the	measured	plasma	concentration	to
occur	if	all	of	the	drug	were	in	fact	in	the	plasma.	If	only	half	of	a	drug	dose	ends	up	in	the
plasma,	then	the	volume	of	distribution	would	be	twice	the	actual	plasma	volume.

If	we	know	the	actual	volume	of	plasma	in	a	body	and	we	also	know	the	volume	of
distribution,	then	the	proportion	of	the	drug	that	ends	up	in	the	plasma	can	be	determined	by

The	good	news	is	that	we	can	estimate	actual	plasma	volume	based	on	sex	and	body	weight,
and	the	volume	of	distribution	is	a	commonly	reported	property	of	any	drug.



Example	6.23:

Find	the	proportion	of	ibuprofen	in	the	body	that	actually	ends	up	in	the	plasma.

A	variety	of	sources	report	the	volume	of	distribution	of	ibuprofen	as	between	0.10	and
0.14 l	per	kg	of	body	weight.	We	will	use	the	commonly	given	0.12 l	per	kg.	We	also	use
the	fact	that	humans	have	actual	plasma	volume	equal	to	approximately	0.04 l	per	kg	body
weight	(Spruill	et	al.,	2014).	Thus	the	proportion	of	ibuprofen	that	is	expected	in	the
plasma	is	given	by

We	see	that	roughly	one	third	of	ibuprofen	will	actually	be	present	in	the	plasma.

We	modify	our	Excel	drug	elimination	model	to	include	the	volume	of	distribution,	denoted	
,	as	a	user	input	parameter,	and	we	have	Excel	calculate	the	proportion	of	drug	found	in	the
plasma,	denoted	by	 	.	The	resulting	setup	with	the	formula	for	 	displayed	is	given	in	Figure
6.50.

FIGURE	6.50	Excel	calculation	of	plasma	proportion	from	volume	of	distribution.

In	the	next	section	we	continue	our	examination	of	ibuprofen.

6.6.1	Section	Exercises

1.	 The	antidepressant	Zoloft	(sertraline)	is	widely	distributed	throughout	the	body	tissues	and
as	a	result	has	a	large	volume	of	distribution:	 	.	Determine	the	proportion	of
Zoloft	that	is	found	in	the	plasma.

2.	 Find	the	volumes	of	distribution	for	three	different	drugs	of	your	choosing.	Use	the	volumes
you	find	to	determine	the	proportion	of	each	drug	that	ends	up	in	the	plasma.



3.	 Suppose	we	know	25%	of	a	particular	drug	ends	up	in	the	plasma.	Determine	this	drug’s
volume	of	distribution.

4.	 Suppose	we	know	60%	of	a	particular	drug	ends	up	in	the	plasma.	Determine	this	drug’s
volume	of	distribution.

5.	 A	patient	weighing	175	pounds	has	a	plasma	concentration	of	 	.	Determine	how
much	drug	in	total	is	in	the	patient’s	body	if	the	volume	of	distribution	for	the	drug	is	

	.

6.7	COMMON	DRUGS
In	this	final	section	we	apply	our	previous	work	to	constructing	models	for	plasma
concentration	for	some	common	drugs,	in	particular	ibuprofen	and	caffeine.

6.7.1	Ibuprofen
Ibuprofen	is	a	pain	reliever,	specifically	a	nonsteroidal	anti-inflammatory	drug	(NSAID),	that
has	a	very	wide	therapeutic	window:	there	is	a	lot	of	room	between	the	drug	level	that
produces	pain	relief	and	the	drug	level	that	is	considered	toxic.

The	minimum	effective	level	for	ibuprofen	is	 	with	toxicity	occurring	at	levels
over	 	(ARUP,	2015).

In	order	for	us	to	discern	the	concentration	of	ibuprofen	in	a	specific	individual	for	a	given
dose,	we	first	need	to	know	how	much	blood	plasma	she	or	he	has.	As	we	noted	in	the
previous	section,	on	average	humans	have	about	0.04 l	of	plasma	per	kilogram	of	body	weight.
Thus	we	need	to	modify	our	Excel	drug	elimination	spreadsheet	to	include	body	weight	as	a
user	input.

First	we	modify	our	Excel	spreadsheet	so	that	the	user	can	enter	their	own	body	weight	and
have	Excel	calculate	their	plasma	volume.	The	setup	with	formula	for	plasma	volume
displayed	is	given	in	Figure	6.51.

FIGURE	6.51	Calculating	plasma	volume	from	body	weight.



To	get	Excel	to	calculate	drug	plasma	concentration	in	addition	to	the	total	amount	of	drug	in
the	body,	we	add	a	new	column	for	plasma	concentration	where	we	multiply	the	amount	of
drug	in	the	body	by	the	proportion	in	the	plasma	and	then	divide	by	the	calculated	plasma
volume.	The	result	is	shown	in	Figure	6.52.

FIGURE	6.52	Calculating	plasma	concentration	from	total	amount	of	drug	in	the	body.

In	the	next	example	we	compare	typical	dosage	instructions	for	over-the-counter	ibuprofen
with	the	stated	therapeutic	window.

Example	6.24:

Lauren	has	a	headache	and	is	going	to	take	some	ibuprofen.	The	dosage	instructions	for
200-mg	ibuprofen	tablets	are	to	take	1–2	tablets	every	4–6 h,	not	to	exceed	6	tablets	in	a
24-h	period.	Compare	our	model	projections	for	concentration	with	the	therapeutic
window	for	Lauren	if	she	weighs	130	pounds.

Recall	that	the	low	end	of	the	therapeutic	window	was	given	as	a	range,	10–50 mg	per	l,
while	the	upper	end	was	given	as	200 mg	per	l.	To	make	these	levels	easy	to	reference,
we	include	them	on	our	graph	as	horizontal	lines.	In	Excel	we	accomplish	this	by	making
an	additional	column	for	each	level	where	every	entry	in	the	column	is	the	stated	value.	In
this	way	when	the	column	is	added	to	our	graph,	we	get	a	horizontal	line.

We	examine	the	ibuprofen	concentration	over	24 h	for	two	cases:	one	where	Lauren	takes
1	tablet	every	6 h	and	one	where	she	takes	2	tablets	every	4 h.

Taking	1	tablet	every	6 h	means	our	parameters	will	be	 	and	 	.	Figure	6.53
shows	Lauren’s	ibuprofen	plasma	concentration.	Note	that	her	ibuprofen	concentration
remains	above	the	10-mg	per	l	mark	a	little	over	half	the	time	she	is	taking	the	tablets.
This	puts	Lauren	just	barely	into	the	therapeutic	window	for	a	little	over	half	the	time	she
is	taking	the	tablets,	and	this	may	or	may	not	be	enough	to	relieve	her	headache.



FIGURE	6.53	Ibuprofen	plasma	concentration	over	time	for	1	tablet	every	6 h.

Next	we	examine	Lauren’s	concentration	if	she	takes	2	tablets	every	4 h.	Here	we	have	to
set	 	,	 	,	and	 	.	The	value	for	N	is	set	to	avoid	taking	more	than	6	tablets
in	a	24-h	period.	Figure	6.54	displays	the	results.	Now	Lauren’s	ibuprofen	concentration
is	solidly	within	the	range	for	the	minimum	effective	level	with	a	peak	of	about	

	,	and	her	concentration	is	still	well	below	the	level	of	toxicity.

FIGURE	6.54	Ibuprofen	plasma	concentration	over	time	for	2	tablets	every	4 h.

For	ibuprofen	it	appears	based	on	the	projections	of	our	model	that	the	recommended	doses
are	fairly	conservative.	We	caution	the	reader	against	taking	any	dose	beyond	that	which	is



recommended.	For	one	thing	we	always	have	to	remember	that	our	model	is	based	on	many
simplifying	assumptions	that	are	unlikely	to	hold	in	individual	cases,	and	we	note	that	there
may	be	other	reasons	for	the	recommended	dosages	other	than	the	plasma	concentration	level.
Drug	interactions,	overall	health	of	the	user,	and	other	factors	all	go	into	what	is	considered	a
safe	dosage	for	over-the-counter	use.	Our	model	results	are	interesting	and	reasonable,	but	they
should	not	lead	us	to	ignore	the	sensible	limits	given	by	the	FDA.

For	many	over-the-counter	drugs,	we	may	not	know	the	therapeutic	window,	but	we	can	use
our	model	to	deduce	it	from	the	given	directions.	The	reader	is	invited	to	do	so	in	the
exercises.

6.7.2	Caffeine
Caffeine	is	a	stimulant	commonly	found	in	a	wide	variety	of	foods	and	beverages	such	as
coffee,	tea,	soft	drinks,	energy	drinks,	and	chocolate;	it	is	also	found	in	certain	medications.
Though	perhaps	not	always	thought	of	as	a	drug,	it	is	the	most	commonly	used	mood-altering
drug	in	the	world	(WebMD,	2015).	In	low	to	moderate	doses,	its	effects	include	increased
alertness,	improved	concentration,	and	improved	athletic	performance	(Smith,	2002;	Spriet	&
Graham,	2015).	However,	an	overdose	of	caffeine	can	lead	to	serious	adverse	effects	such	as
increased	blood	pressure,	rapid	heartbeat,	vomiting,	and	death	(Healthline,	2015).	It	is	one	of
few	legal	performance-enhancing	drugs	widely	used	by	endurance	athletes,	though	urinary
concentration	levels	above	12 mg	per	l	are	banned	by	the	International	Olympic	Committee
(IOC)	(Spriet,	1995).

In	addition	to	the	many	foods	and	beverages	that	contain	caffeine,	it	has	also	become	possible
in	recent	years	to	purchase	pure	caffeine	in	powdered	form	over	the	Internet.	Using	caffeine	in
this	form	is	a	bad	idea.	One	teaspoon	of	powdered	caffeine	contains	the	equivalent	of	the
caffeine	found	in	25	cups	of	coffee.	Powdered	caffeine	has	been	linked	to	at	least	two	deaths,
and	the	FDA	has	issued	a	warning	against	its	use	(FDA,	2014).

When	caffeine	is	ingested,	it	passes	rapidly	into	the	bloodstream	through	the	small	intestine.	It
is	metabolized	in	the	liver	at	a	rate	that	is	proportional	to	the	amount	of	caffeine	in	the	body;
thus	caffeine	undergoes	first-order	elimination.

In	order	to	use	our	two-compartment	model	to	project	caffeine	levels,	we	need	to	find	the
relevant	parameters	for	caffeine.	We	start	with	the	elimination	rate.

The	half-life	of	caffeine	can	vary	quite	a	bit	from	person	to	person,	but	it	will	generally	be
between	2.5	and	4.5 h	(Fredholm	B.	B.	et	al.,	1999).	For	smokers	the	half-life	will	be	reduced
by	30–50%	compared	to	nonsmokers,	and	for	women	taking	oral	contraceptives	the	half-life
can	as	much	as	double	(Fredholm	B.	B.	et	al.,	1999).	Deducing	the	elimination	rate	from	half-
life	is	something	we	have	done	before	and	our	Excel	model	now	does	it	automatically.	Using	3 
h,	or	180 min,	for	the	half-life	gives	us	an	elimination	rate	of	 	.	Next	we	find	the
absorption	rate	from	the	GI	tract	into	the	blood.

Within	45 min	of	ingestion,	approximately	99%	of	caffeine	is	absorbed	into	the	blood	(Marks
&	Kelly,	1973).	A	calculation	similar	to	finding	the	rate	of	elimination	from	the	half-life	is



required	to	find	the	rate,	α,	at	which	caffeine	moves	from	GI	tract	to	the	bloodstream.
Specifically	we	need	to	solve	the	equation	 	,	and	the	result	is	 	.	In
other	words,	about	10%	of	ingested	caffeine	is	absorbed	into	the	blood	each	minute,	a	very
rapid	rate.

Once	we	know	α	and	r,	we	are	just	about	ready	to	model	caffeine.	The	dose	depends	on	the
source	of	the	caffeine.	A	strong	8-oz.	cup	of	coffee,	for	example,	contains	about	150 mg	of
caffeine.	The	reader	will	find	it	easy	to	look	up	similar	values	for	other	beverages	such	as	tea
or	energy	drinks.	Since	we	assume	that	the	caffeine	ingested	will	be	in	beverage	form,	we
interpret	the	dissolution	time	to	be	the	time	it	takes	someone	to	finish	a	drink.	We	assume	a
value	of	15 min	here.	The	frequency	we	understand	to	be	the	time	between	drinks	and	N	will
be	the	total	number	of	drinks	consumed	in	a	day.

The	volume	of	distribution	of	caffeine	is	approximately	0.40–0.75 l	per	kg	of	body	weight

(Abernethy,	1985;	Giardinia,	2015).	We	use	0.50	here,	which	gives	us	 	.

Finally	we	note	that	the	IOC	limit	for	caffeine	concentration	is	given	as	a	urinary
concentration.	According	to	Birkett	and	Miners	(1991),	plasma	concentration	of	caffeine	tends
to	be	roughly	1.4	times	that	of	the	urinary	concentration.	Thus	the	IOC	limit	of	 	for
caffeine	urine	concentration	is	equivalent	to	a	plasma	concentration	limit	of	

	.

We	put	all	of	this	together	in	the	following	example.



Example	6.25:

Suppose	Mia	is	a	110-pound	female	Olympic	athlete	who	consumes	three	strong	8-oz.
cups	of	coffee	all	at	once,	finishing	the	last	one	an	hour	before	her	competition.	Will
Mia’s	caffeine	plasma	concentration	exceed	the	IOC	limit?

For	this	example	we	need	the	amount	of	caffeine	in	a	cup	of	strong	brewed	coffee.	A	quick
Internet	search	reveals	that	this	can	vary	quite	a	bit	but	a	value	of	150 mg	is	reasonable;
thus	 	.	We	use	 	min	for	the	time	it	takes	to	drink	one	cup.	Because	she
consumes	all	of	the	cups	in	succession,	there	are	exactly	15 min	between	doses	and	we
have	 	and	 	.	We	graph	Mia’s	plasma	concentration	and	show	the	result	in
Figure	6.55.	Note	that	Mia’s	plasma	concentration	remains	below	the	IOC	limit.
However,	if	she	were	to	have	a	fourth	cup,	she	would	be	at	some	risk	of	exceeding	the
limit.	Four	cups	of	coffee	in	quick	succession	is	a	lot	of	coffee.	This	indicates	that	under
normal	circumstances	athletes	do	not	have	to	be	overly	concerned	with	exceeding	the	IOC
limit.	To	do	so	would	almost	surely	indicate	intentional,	excessive	intake.

FIGURE	6.55	Caffeine	plasma	concentration	over	time	for	Example	6.25.

We	noted	earlier	that	caffeine	does	enhance	athletic	performance,	but	it	does	so	at	levels	that
are	typically	well	below	the	IOC	threshold.	In	fact,	a	dose	of	approximately	1.4–2.7 mg	per
pound	of	body	weight	is	sufficient	to	obtain	performance	benefits,	while	higher	doses	confer
no	additional	benefit	(Goldstein	et	al.,	2010).	Moreover,	a	dose	of	4–5.9 mg	per	pound	of	body
weight	is	necessary	to	exceed	the	IOC	limit	(Goldstein	et	al.,	2010),	so	it	is	in	general	not	to	an
athlete’s	advantage	to	risk	going	over	the	limit.	In	the	previous	example,	Mia	had	the
equivalent	of	a	dose	of	3.5 mg	per	pound	of	body	weight,	more	than	enough	to	reap	all	of



caffeine’s	performance	benefits,	and	she	was	still	below	the	IOC	limit.

6.7.3	Exercises

1.	 Jessie	is	sore	from	a	long	run	and	is	going	to	take	some	ibuprofen.	If	Jessie	weighs	120
pounds	and	takes	2	 	tablets	every	4 h,	graph	her	ibuprofen	plasma	concentration
along	with	horizontal	lines	for	the	therapeutic	window.

2.	 Craig	weighs	300	pounds	and	is	going	to	take	ibuprofen	to	relieve	a	back	ache.	Will	taking
1	 	tablet	every	6 h	be	enough	for	him	to	experience	relief	from	the	pain?	Explain.

3.	 Suppose	Steve	is	a	210-pound	Olympic	athlete	who	consumes	four	strong	8-oz.	cups	of
coffee	consecutively,	finishing	the	last	30 min	before	his	competition.	Will	Steve’s	caffeine
plasma	concentration	exceed	the	IOC	limit?	Explain.

4.	 How	many	Starbucks	grande	lattés	can	Mia	from	Example	6.25	have	before	she	is	over	the
IOC	limit	for	caffeine?

5.	 We	based	our	elimination	rate	for	caffeine	on	a	value	for	the	half-life	that	was	near	the
middle	of	the	given	half-life	range.	The	range	was	given	as	2.5–4.5 h,	and	we	used	3 h	to
find	r.	Investigate	how	much	difference	it	would	make	in	Example	6.25	if	the	half-life	were
(a)	2.5 h	and	(b)	4.5 h.

6.	 We	based	our	proportion	of	caffeine	in	the	plasma,	 	,	on	a	volume	of	distribution	of
0.50,	which	is	in	the	given	range	of	approximately	0.40–0.75 l	per	kg.	Investigate	how
much	difference	it	would	make	in	Example	6.25	if	we	used	(a)	0.40	and	(b)	0.75	for	the
volume	of	distribution.

7.	 Extension:	Suppose	Mia	from	Example	6.25	is	taking	oral	contraceptives.	Rework
Exercise	4	taking	into	account	this	new	information.

8.	 The	NCAA	competition	limit	on	caffeine	urine	concentration	is	 	.	Determine
how	many	of	your	favorite	caffeinated	beverage	you	could	have	3 h	before	a	competition
and	still	be	under	the	NCAA	limit.

9.	 Use	our	Excel	model	to	estimate	how	many	 	tablets	of	ibuprofen	a	200-pound	man
can	ingest	at	once	before	his	ibuprofen	plasma	concentration	reaches	toxic	levels.

10.	 Extension:	Estimate	the	therapeutic	window	for	Zoloft	by	modeling	standard	dosage
recommendations.

11.	 Extension:	Suppose	a	caffeine	plasma	concentration	of	 	is	enough	to	disturb	your
sleep.	Estimate	how	late	in	the	day	you	could	have	a	grande	Starbucks	coffee	and	not
disturb	your	sleep.



7
RANKING	METHODS
In	this	chapter	we	explore	how	discrete	dynamical	systems	can	be	used	in	ranking	methods.	We
focus	on	a	particular	type	of	model	known	as	a	Markov	model,	named	for	the	Russian
mathematician	Andrei	Markov	(1856–1922).	In	a	Markov	model	members	are	divided	into
classes,	or	states,	and	during	each	time	step	members	move	from	one	state	to	another,	or	they
may	remain	in	the	same	state.	Members	may	not	“leave	the	model.”	The	percentages	or
proportions	of	members	moving	from	one	state	to	any	other	state	is	fixed	and	does	not	depend
on	time.	Finally,	what	happens	in	a	given	time	step	does	not	depend	on	what	has	happened	in
previous	time	steps:	all	that	is	important	is	the	present	state,	not	how	that	state	came	about.

7.1	INTRODUCTION	TO	MARKOV	MODELS
In	this	section	we	introduce	Markov	models	via	the	concrete	example	of	a	truck	rental
company	fleet.	We	examine	the	models	numerically	with	Excel,	algebraically	in	finding
equilibrium	distributions,	and	graphically	by	examining	the	flow	diagram.	As	we	show	in	the
following,	we	can	deduce	a	great	deal	about	a	Markov	model	from	its	flow	diagram,	including
whether	or	not	the	model	will	have	a	stable	distribution.

7.1.1	Truck	Rentals
Suppose	a	truck	rental	company	has	locations	in	Birmingham,	Alabama;	Columbia,	South
Carolina;	and	Dallas,	Texas.	The	company	permits	one-way	rentals	and	knows	based	on	past
experience	that	during	a	typical	week	the	following	truck	movements	occur:

1.	 Of	the	trucks	that	start	in	Birmingham:

a.	 60%	stay	in	Birmingham

b.	 15%	travel	to	Columbia

c.	 25%	travel	to	Dallas

2.	 Of	the	trucks	that	start	in	Columbia:

a.	 45%	stay	in	Columbia

b.	 15%	travel	to	Birmingham

c.	 40%	travel	to	Dallas

3.	 Of	the	trucks	that	start	in	Dallas:

a.	 70%	stay	in	Dallas

b.	 20%	travel	to	Birmingham



c.	 10%	travel	to	Columbia

Example	7.1:

Suppose	the	truck	rental	company	has	a	total	fleet	of	150	trucks:	60	trucks	in	Birmingham,
40	trucks	in	Columbia,	and	50	trucks	in	Dallas.	Determine	(i)	how	many	trucks	will	end
up	in	each	city	after	13	weeks,	and	(ii)	how	the	company	should	allocate	its	fleet	to
maintain	constant	inventory	at	each	location.

Our	time	steps	will	be	weeks,	and	we	let	 	be	the	number	of	trucks	in	Birmingham,	
	the	number	of	trucks	in	Columbia,	and	 	the	number	of	trucks	in	Dallas	after	t

weeks.	We	represent	truck	movements	with	a	flow	diagram	as	in	Figure	7.1.	The	arrows
indicate	the	percentage	of	trucks	moving	from	one	city	to	another	each	week.

FIGURE	7.1	Percentages	of	trucks	moving	between	cities.

Next	we	label	the	diagram	with	the	numbers	of	trucks	moving	from	city	to	city	as	in	Figure
7.2.



FIGURE	7.2	Numbers	of	trucks	moving	between	cities.

We	construct	the	corresponding	DDS	as	usual	with	inward-pointing	arrows	representing
additions	and	outward-pointing	arrows	subtractions.	The	truck	rental	DDS	is	given	by

Implementing	the	model	in	Excel	requires	a	column	for	the	number	of	trucks	in	each	of	the
cities	and	some	care	in	referring	to	the	appropriate	cells.	We	have	six	parameters	for	the
model,	one	for	each	of	the	arrows	in	the	flow	diagram	representing	truck	movements
between	two	cities.	Our	initial	Excel	setup	with	the	formula	for	Birmingham	displayed	is
given	in	Figure	7.3.



FIGURE	7.3	Excel	setup	for	truck	rental	example.

With	60	trucks	initially	in	Birmingham,	50	in	Dallas,	and	40	in	Columbia,	after	the	first
week	we	have	52	trucks	in	Birmingham,	32	in	Columbia,	and	66	in	Dallas.	If	we	drag	the
model	down	to	week	13,	we	see	that	the	number	of	trucks	in	each	city	stabilizes	at	about
48	trucks	in	Birmingham,	27	in	Columbia,	and	75	in	Dallas.	Figure	7.4	shows	the	Excel
output	with	most	rows	hidden.



FIGURE	7.4	Excel	projections	for	numbers	of	trucks	in	each	city.

No	matter	how	much	further	we	drag	the	model	down,	this	long-term	distribution	of	trucks
will	not	change.	It	also	answers	the	second	question	in	the	example.	If	we	want	to
maintain	a	constant	inventory	in	each	city,	we	need	to	begin	with	48	trucks	in	Birmingham,
27	in	Columbia,	and	75	in	Dallas.

We	conclude	the	example	by	noting	that	having	a	constant	number	of	trucks	in	each	city
from	week	to	week	does	not	imply	that	we	have	the	same	trucks	in	each	city	from	week	to
week.	Trucks	are	still	moving	among	the	cities,	it	is	just	that	the	movements	balance	out	to
keep	the	numbers	the	same.

	

It	is	interesting	to	note	that	the	long-term	distribution	of	trucks	in	the	previous	example	does	not
depend	on	how	we	distribute	our	150	trucks	initially.	Even	if	we	start	with	all	of	the	trucks	in
Columbia,	for	example,	eventually	the	distribution	settles	down	to	what	we	found	in	Example
7.1.

We	should	expect	that	changing	the	total	number	of	trucks	in	the	fleet	will	change	the	final



numbers	in	each	city.	What	is	interesting,	though,	is	that	the	distribution	of	trucks	does	not
change:	we	will	end	up	with	the	same	percentages	of	trucks	in	each	city	regardless	of	how
many	trucks	we	start	with.	A	distribution	that	remains	constant	over	time	is	known	as	an
equilibrium	distribution,	and	if	the	model	tends	to	this	distribution	regardless	of	the	initial
values,	it	is	called	a	stable	distribution.	When	all	of	the	percentages	are	strictly	positive,	we
call	a	distribution	positive.	Generally	speaking	the	requirement	that	the	stable	distribution	be
positive	lets	us	know	that	we	will	get	physically	meaningful	results	from	the	model.

In	the	next	example	we	use	Excel	to	verify	that	the	truck	fleet	has	a	positive	stable	distribution.



Example	7.2:

Show	that	the	long-term	distribution	of	trucks	in	Example	7.1	remains	the	same	regardless
of	how	many	trucks	there	are	initially.

As	it	stands	now	our	Excel	model	keeps	track	of	how	many	trucks	are	in	each	city	but	not
what	percentage	of	trucks	is	in	each	city.	Thus	to	work	this	example,	we	must	set	up
additional	columns	in	our	Excel	spreadsheet	where	we	keep	track	of	the	percentage	of
trucks	in	each	location.	For	example,	to	find	the	percentage	of	trucks	that	are	in	Dallas	at
time	t,	we	need	to	calculate	the	number	of	trucks	in	Dallas	divided	by	the	total	number	of

trucks:	 	.	Figure	7.5	shows	the	Excel	setup	with	the	formula	for
Birmingham	displayed.

FIGURE	7.5	Excel	setup	for	calculating	distribution	of	trucks.

With	our	new	columns	formatted	as	percentages,	we	copy	the	columns	down	to	find	the
long-term	stable	distribution.	We	end	up	with	about	32%	of	the	trucks	in	Birmingham,
18%	in	Columbia,	and	50%	in	Dallas.	All	percentages	are	positive	so	we	have	a	positive
stable	distribution.	By	experimenting	with	different	initial	numbers	of	trucks,	we	can
confirm	that	these	percentages	do	not	change.

	

The	stable	distribution	can	provide	useful	information	for	planning	purposes	as	we	see	in	the
next	example.



Example	7.3:

Suppose	the	truck	rental	company	is	considering	expanding	its	fleet	to	250	total	trucks.
Determine	the	company’s	storage	needs	at	each	city’s	facility.

Because	the	fleet	has	a	stable	distribution,	the	rental	company	knows	that	in	the	long	term
it	can	expect	about	 	trucks	to	end	up	in	Birmingham,	 	to
end	up	in	Columbia,	and	 	trucks	to	end	up	in	Dallas.	Based	on	these
requirements	the	company	knows	approximately	how	many	trucks	their	facility	in	each
city	must	house.	Furthermore	the	company	can	assess	whether	or	not	their	current	facilities
are	sufficient	or	if	there	is	a	need	to	build	additional	capacity.

	

Not	all	Markov	models	have	a	positive	stable	distribution.	In	the	next	section	we	show	how	to
determine	when	a	model	will	have	such	a	distribution.

7.1.2	Existence	of	a	Positive	Stable	Distribution
The	existence	of	a	positive	stable	distribution	is	a	common	feature	of	Markov	models,	though	it
is	not	guaranteed.	Two	characteristics	are	sufficient	in	order	to	guarantee	that	a	Markov	model
will	have	a	positive	stable	distribution.	The	first	is	that	the	flow	diagram	for	the	model	must	be
irreducible.	A	flow	diagram	is	irreducible	if	it	is	possible	to	travel	between	any	two	states
(not	necessarily	in	one	step).	The	second	is	trickier	to	define,	and	it	is	that	the	flow	diagram
must	be	aperiodic.

To	define	what	we	mean	by	an	aperiodic	flow	diagram,	we	first	must	define	what	we	mean	by
an	aperiodic	state.	The	period	of	a	state	in	a	flow	diagram	is	the	greatest	common	divisor	of
the	numbers	of	steps	required	for	all	possible	return	trips	to	the	state.	A	state	in	a	flow	diagram
is	said	to	be	periodic	if	its	period	is	any	number	other	than	1.	If	the	period	of	a	state	is	1,	the
state	is	said	to	be	aperiodic.	We	then	define	an	aperiodic	flow	diagram	as	one	for	which	all
states	are	aperiodic.	(For	a	more	rigorous	treatment	of	the	definition	of	periodic	and	aperiodic,
see	any	introductory	graph	theory	text.)	Below	we	present	examples	of	flow	diagrams	to	help
clarify	the	definitions.



Example	7.4:

Figure	7.6	shows	a	flow	diagram	that	is	irreducible	but	not	aperiodic.

FIGURE	7.6	An	irreducible	diagram	that	is	periodic.

It	is	irreducible	because	it	is	possible	to	travel	from	any	city	to	any	other	city.	The
diagram	is	not	aperiodic	because	in	order	to	return	to	any	starting	state,	it	is	necessary	to
travel	around	a	forced	loop	of	three	states:	any	trip	beginning	and	ending	at	the	same	state
must	consist	of	a	number	of	steps	that	is	a	multiple	of	3.	Thus	every	state	is	periodic	with
period	equal	to	3.

	

A	nice	way	to	tell	if	the	state	is	aperiodic	is	if	it	is	possible	to	simply	remain	in	the	state.	If	it
is	possible	to	remain	in	a	state,	then	the	period	for	that	state	is	automatically	1.	Thus	if	we	have
a	flow	diagram	where	it	is	possible	to	remain	in	every	state,	the	diagram	will	be	aperiodic.

Example	7.5:



The	flow	diagrams	in	Figure	7.7	and	in	Figure	7.8	are	not	irreducible.

FIGURE	7.7	A	diagram	that	is	not	irreducible.



FIGURE	7.8	Another	diagram	that	is	not	irreducible.

Figure	7.7	is	not	irreducible	because	it	is	not	possible	for	a	truck	to	travel	to	Birmingham.
Figure	7.8	is	not	irreducible	because	it	is	not	possible	for	a	truck	to	travel	to	Birmingham
nor	is	it	possible	for	trucks	to	travel	between	Columbia	and	Dallas.

	

Before	getting	to	our	main	result,	we	state	without	proof	the	following	fact	about	irreducible
flow	diagrams:	for	any	irreducible	flow	diagram,	if	one	state	isaperiodic,	then	all	states	are
aperiodic.	Thus	to	determine	whether	or	not	an	irreducible	flow	diagram	is	aperiodic,	we
need	only	find	one	state	that	we	know	is	aperiodic.

The	following	theorem	will	be	our	main	result	in	this	chapter.	Its	proof,	which	we	omit	here,
can	be	found	in	any	introductory	text	on	Markov	models.	By	a	finite	Markov	model,	we	mean
one	with	a	finite	number	of	states.



Theorem	7.1

If	a	finite	Markov	model’s	flow	diagram	is	both	irreducible	and	aperiodic,	then	the	model
will	have	a	positive	stable	distribution.

Note	that	in	Figure	7.1	for	the	truck	rental	example,	it	is	possible	to	travel	from	any	of	the	three
cities	to	any	of	the	others.	It	is	also	possible	for	a	truck	to	remain	in	any	city.	Thus	for	the	truck
rental	example,	we	have	an	irreducible,	aperiodic	flow	diagram,	and	we	are	thus	guaranteed	a
positive	stable	distribution,	that	is,	one	that	does	not	depend	on	the	initial	location	or	number
of	trucks.

The	model	represented	by	Figure	7.6	will	not	have	a	stable	distribution	because	all	trucks
continually	make	a	forced	loop	through	the	three	cities.	Unless	we	start	with	equal	proportions
of	trucks	in	each	city,	the	proportions	in	each	city	change	every	time	step.

The	model	represented	by	Figure	7.7	will	have	a	stable	distribution	because	all	trucks	end	up
in	Dallas	regardless	of	where	they	start.	However,	the	distribution	is	not	positive	because	0%
of	the	trucks	end	up	in	Birmingham	and	Columbia.

The	model	represented	by	Figure	7.8	will	not	have	a	stable	distribution	because	the	final
percentages	in	each	city	depend	on	the	initial	distribution	of	trucks.	If	all	trucks	start	in
Birmingham,	then	we	end	up	with	50%	in	Columbia	and	50%	in	Dallas.	However,	if	all	trucks
start	in	Columbia,	we	end	up	with	100%	in	Columbia.	The	distribution	is	also	not	positive
because	we	always	end	up	with	0%	of	the	trucks	in	Birmingham.

Next	we	show	how	to	determine	equilibrium	distributions	algebraically.

7.1.3	Equilibrium	Distributions
In	Chapter	1	if	we	knew	we	had	a	stable	equilibrium,	we	could	find	it	in	one	of	two	ways.	We
could	look	at	the	long-term	values	projected	by	Excel,	or	we	could	solve	for	the	equilibrium
value	algebraically.	With	a	stable	equilibrium	both	methods	must	produce	the	same	result.

The	same	is	true	when	dealing	with	Markov	models	and	long-term	distributions.	If	we	know
that	we	will	get	a	stable	positive	distribution,	then	we	can	find	it	with	Excel	or	we	can	find	it
algebraically.

Any	finite	Markov	model	with	an	irreducible	flow	diagram	will	have	an	equilibrium
distribution	that	can	be	determined	algebraically.	It	is	when	the	flow	diagram	is	also	aperiodic
that	we	know	the	equilibrium	distribution	is	in	fact	the	positive	stable	distribution	guaranteed
by	Theorem	7.1.	We	illustrate	this	fact	in	the	following	example.

Example	7.6:

Find	the	equilibrium	distribution	for	the	model	in	Example	7.1.



We	first	must	find	the	equilibrium	point	 	at	which	the	number	of	trucks	in	each
city	does	not	change.	For	the	truck	rental	fleet	in	the	previous	section,	this	means	solving
the	following	system	for	 	:

Our	method	is	to	get	all	of	the	variables	in	terms	of	one	of	the	others	and	then	to	find	the
value	for	that	one	variable.	Here	we	work	to	write	 	and	 	in	terms	of	 	.	First	we
collect	like	terms	to	get

The	first	equation	allows	us	to	write	 	in	terms	of	 	and	 	:

Next	we	substitute	the	expression	for	 	into	the	second	equation	and	simplify.	This	gives

Thus	we	can	write	 	in	terms	of	 	:	 	.	This	in	turn	allows
us	to	write	 	in	terms	of	 	as	well:

We	have	found	that	our	equilibrium	values	for	the	number	of	trucks	in	each	city	are	related
by

The	last	step	is	to	solve	for	 	,	which	we	do	by	recalling	that	the	total	number	of	trucks
in	our	fleet	has	to	be	150.	Thus	at	equilibrium	we	must	have



The	result	is	that	we	should	end	up	with	about	75	trucks	in	Dallas	long	term,	and	we	note
that	this	is	the	same	value	we	found	before	with	Excel.

To	finish	up	we	need	to	calculate	the	number	of	trucks	in	Birmingham	and	Columbia	and
note	that	these	match	up	with	our	previous	work	as	well:

Once	we	have	the	equilibrium	point,	we	can	find	the	equilibrium	distribution.	For	the
percentage	of	trucks	that	end	up	in	Dallas,	we	calculate

Note	that	we	can	cancel	the	 	in	the	numerator	and	denominator	to	get

As	shown	by	the	cancellation	of	 	,	we	did	not	need	the	number	of	trucks	to	get	this
result:	it	is	independent	of	how	many	trucks	we	have	and	where	they	start.	The
computations	for	Birmingham	and	Columbia	are	similar,	and	all	agree	with	our	previous
Excel	result.

	

In	this	example	the	equilibrium	distribution	of	trucks	found	from	the	equilibrium	point	turned
out	to	be	the	same	as	the	long-term	distribution	of	trucks	from	our	Excel	work.	Once	again,	this
is	because	the	flow	diagram	in	Example	7.1	is	both	irreducible	and	aperiodic:	Theorem	7.1
guarantees	a	positive	stable	distribution.

In	the	case	of	an	unstable	equilibrium	in	Chapter	1,	the	equilibrium	value	we	found
algebraically	did	not	turn	out	to	be	the	long-term	value	for	the	model.	The	same	phenomenon
can	occur	with	an	equilibrium	distribution.	The	next	example	shows	that	it	is	possible	for	the
equilibrium	distribution	to	not	be	the	long-term	distribution	of	a	Markov	model.



Example	7.7:

Determine	the	equilibrium	distribution	for	the	model	represented	by	the	flow	diagram	in
Figure	7.6.

Recall	that	the	diagram	in	Figure	7.6	in	Example	7.4	is	irreducible	but	not	aperiodic,	and
it	will	not	have	a	stable	distribution.	As	we	see	in	the	following,	it	does	still	have	an
equilibrium	distribution.

The	DDS	for	the	model	represented	in	Figure	7.6	is	given	by

This	simplifies	to	give

Thus	we	need	to	solve	the	following	for	 	:

The	last	equation	implies	that	the	numbers	of	trucks	in	each	city	must	all	be	equal,	which
means	the	equilibrium	distribution	must	occur	when	 	of	the	trucks	are	in	each	city.	Thus	if
we	begin	with	 	of	the	trucks	in	each	city,	the	proportion	in	each	city	will	remain	at	 	.
Otherwise	the	proportion	in	each	city	will	change	with	every	time	step.

	

In	the	next	section	we	give	an	alternative	way	of	interpreting	Markov	flow	diagrams.

7.1.4	Interpreting	Markov	Flow	Diagrams
A	useful	way	to	interpret	a	Markov	flow	diagram	is	to	change	our	point	of	view	from	a	global
one	to	an	individual	one.	In	our	truck	rental	example,	the	global	view	is	that	every	time	step



20%	of	trucks	in	Dallas	will	move	on	to	Birmingham.	However,	we	do	not	know	which	trucks
will	move	from	Dallas	to	Birmingham.	An	equivalent	interpretation	would	be	that	from	an
individual	truck’s	perspective	if	it	is	in	Dallas,	then	it	has	a	20%	chance	of	heading	to
Birmingham	during	the	next	time	step.	Similarly,	rather	than	taking	the	global	view	that	40%	of
trucks	in	Columbia	head	to	Dallas	during	the	next	time	step,	we	could	say	that	an	individual
truck	in	Columbia	has	a	40%	chance	of	being	taken	to	Dallas	during	the	next	time	step.	Thus	if
we	imagine	ourselves	as	a	truck	in	the	rental	fleet,	then	from	week	to	week	we	move	randomly
among	the	three	cities	with	our	movements	governed	by	the	chances	of	traveling	from	one	city
to	the	next	given	in	our	flow	diagram.	This	kind	of	interpretation	of	a	Markov	flow	diagram	is
known	as	a	random	walk.

Generally	speaking	viewing	a	Markov	model	as	a	random	walk	means	experiencing	the	model
on	an	individual	level.	At	each	oval	the	outward-pointing	arrows	show	us	the	possible	moves
we	can	make,	and	we	can	interpret	the	attached	percentages	as	the	percent	chance	that	we	will
take	that	path.	Thus	we	can	view	our	every	step	as	a	random	one	governed	by	the	chances	that
we	will	move	on	to	another	oval	or	remain	in	the	current	one.	Once	at	the	next	oval	the
individual	is	faced	with	another	random	movement	in	the	subsequent	step.	The	individual	is
“randomly	walking”	from	oval	to	oval	in	the	flow	diagram.

With	this	interpretation	we	also	view	our	stable	distribution	differently.	From	a	global
perspective,	the	stable	distribution	represents	the	percentages	of	the	fleet	that	end	up	in	each
city.	We	need	to	remember	though	that	a	stable	distribution	does	not	mean	that	trucks	have	quit
moving.	Trucks	are	still	moving	among	cities	every	week,	it	is	just	that	the	movements	balance
out	to	keep	the	percentages	the	same.	From	a	random	walk	perspective,	we	view	the	stable
distribution	as	the	relative	amount	of	time	an	individual	truck	will	spend	in	each	city.	For
Example	7.2	we	expect	any	particular	truck	to	spend	an	average	of	50%	of	its	weeks	in	Dallas,
32%	in	Birmingham,	and	18%	in	Columbia.

In	the	remainder	of	this	chapter,	we	use	Markov	models	in	the	context	of	ranking	systems,	first
for	sports	teams	and	then	for	web	search	results.

7.1.5	Section	Exercises

1.	 Suppose	a	truck	rental	company	has	locations	in	Birmingham,	Alabama;	Columbia,	South
Carolina;	and	Dallas,	Texas.	The	company	permits	one-way	rentals	and	knows	based	on
past	experience	that	during	a	typical	week	the	following	truck	movements	occur:

Of	the	trucks	that	start	in	Birmingham:

50%	stay	in	Birmingham

25%	travel	to	Columbia

25%	travel	to	Dallas

Of	the	trucks	that	start	in	Columbia:

40%	stay	in	Columbia



20%	travel	to	Birmingham

40%	travel	to	Dallas

Of	the	trucks	that	start	in	Dallas:

80%	stay	in	Dallas

15%	travel	to	Birmingham

5%	travel	to	Columbia

a.	 Give	a	flow	diagram	for	the	model.

b.	 Implement	the	model	in	Excel.

c.	 If	200	trucks	begin	in	each	city,	use	Excel	to	determine	the	long-term	numbers	of	trucks
in	each	city.

d.	 Use	Excel	to	determine	the	long-term	distribution	of	trucks	in	each	city.

2.	 For	the	situation	in	Exercise	1,	suppose	the	facilities	in	each	city	can	hold	100	trucks	each.
Determine	the	largest	number	of	trucks	the	company	can	have	in	its	fleet.

3.	 Suppose	a	truck	rental	company	has	locations	in	Birmingham,	Alabama;	Columbia,	South
Carolina;	Dallas,	Texas;	and	Evansville,	Indiana.	The	company	permits	one-way	rentals
and	knows	based	on	past	experience	that	during	a	typical	week	the	following	truck
movements	occur:

Of	the	trucks	that	start	in	Birmingham:

50%	stay	in	Birmingham

25%	travel	to	Columbia

15%	travel	to	Dallas

10%	travel	to	Evansville

Of	the	trucks	that	start	in	Columbia:

40%	stay	in	Columbia

14%	travel	to	Birmingham

34%	travel	to	Dallas

12%	travel	to	Evansville

Of	the	trucks	that	start	in	Dallas:

75%	stay	in	Dallas

15%	travel	to	Birmingham

5%	travel	to	Columbia

5%	travel	to	Evansville



Of	the	trucks	that	start	in	Evansville:

65%	stay	in	Evansville

10%	travel	to	Birmingham

10%	travel	to	Columbia

15%	travel	to	Dallas

a.	 Give	a	flow	diagram	for	the	model.

b.	 Implement	the	model	in	Excel.

c.	 If	200	trucks	begin	in	each	city,	use	Excel	to	determine	the	long-term	numbers	of	trucks
in	each	city.

d.	 Use	Excel	to	determine	the	long-term	distribution	of	trucks	in	each	city.

4.	 For	the	situation	in	Exercise	3,	suppose	the	facilities	in	each	city	can	hold	100	trucks	each.
Determine	the	largest	number	of	trucks	the	company	can	have	in	its	fleet.

5.	 For	the	situation	in	Exercise	1,	find	the	largest	fleet	the	company	can	accommodate	if	it	can
house	100	trucks	in	Birmingham,	50	trucks	in	Columbia,	and	150	trucks	in	Dallas.

6.	 For	the	situation	in	Exercise	3,	find	the	largest	fleet	the	company	can	accommodate	if	it	can
house	60	trucks	in	Birmingham,	70	trucks	in	Columbia,	80	trucks	in	Dallas,	and	60	trucks
in	Evansville.

7.	 Considering	the	flow	diagram	in	Exercise	1,	how	do	we	know	that	we	will	end	up	with	a
stable	distribution?

8.	 Considering	the	flow	diagram	in	Exercise	3,	how	do	we	know	that	we	will	end	up	with	a
stable	distribution?

9.	 Give	an	example	of	a	four-city	flow	diagram	for	which	there	will	be	no	positive	stable
distribution.	What	condition(s)	of	Theorem	7.1	does	the	diagram	violate?

10.	 Algebraically	determine	the	long-term	distribution	for	the	truck	fleet	in	Exercise	1.

11.	 Interpret	the	flow	diagram	for	Exercise	1	from	a	random	walk	point	of	view.

12.	 Extension:	Suppose	the	truck	rental	company	from	Exercise	1	wishes	to	expand	its	fleet.	It
does	so	by	adding	two	new	trucks	to	the	Dallas	facility	each	week:

a.	 Give	the	flow	diagram	for	the	new	situation.

b.	 Implement	the	change	in	Excel.

c.	 Compare	and	contrast	the	long-term	model	behavior	with	the	behavior	from	Exercise	1.

13.	 Give	an	example	of	a	flow	diagram	with	six	states	that	is	not	irreducible.

7.2	RANKING	SPORTS	TEAMS



A	popular	activity	among	sports	analysts	and	fans	is	to	produce	rankings	of	who	is	the	best
team.	In	contexts	where	teams	or	individuals	play	only	a	small	percentage	of	possible
opponents	such	as	in	professional	chess,	Scrabble™,	and	tennis,	mathematical	ranking	systems
are	especially	important.	Until	recently	college	football	relied	on	a	composite	of	several
different	ranking	systems,	some	of	which	use	advanced	mathematics,	to	decide	which	2	teams
should	play	in	the	national	championship	game.	There	are	many	different	mathematical	methods
for	producing	rankings	beyond	those	discussed	here,	and	an	excellent	survey	of	many	of	them
can	be	found	in	the	book	Who’s	#1?	By	Langville	and	Meyer	(2012).

Ranking	sports	teams	simply	based	on	wins	and	losses	or	winning	percentage	can	be
problematic.	In	Major	League	Baseball	where	teams	play	a	large	number	of	games	against	a
relatively	high	percentage	of	all	possible	opponents	each	season,	using	straight	wins	and
losses	makes	some	sense.	For	college	football,	though,	where	teams	only	play	a	small
percentage	of	available	teams	and	teams	vary	dramatically	in	their	abilities,	using	wins	and
losses	is	insufficient.	Strength	of	schedule,	or	the	difficulty	level	of	the	teams	played,	must	play
a	prominent	role.	A	team	that	is	undefeated	against	teams	that	all	have	losing	records	should
not	be	given	as	much	credit	as	a	team	that	is	undefeated	against	teams	with	winning	records.
The	competition	faced	by	the	second	team	is	much	stiffer	and	so	the	second	team	should	get
more	credit.

One	method	of	ranking	teams	is	to	turn	the	idea	of	“getting	more	credit	for	good	wins”	into	a
mathematical	process	using	a	Markov	model	that	tracks	the	“distribution	of	credit”	among	all
teams.	We	begin	with	the	assumption	that	each	time	a	team	defeats	another,	the	losing	team
gives	some	proportion	of	its	credit	to	the	winning	team.	We	set	up	the	model	so	that	a	team
with	only	one	loss	will	give	a	relatively	high	proportion	of	its	credit	to	the	team	that	beat	it,	but
a	team	with	many	losses	will	give	a	reduced	proportion	of	credit	to	each	of	the	teams	that
defeated	it.	In	this	way	the	winning	team	rightfully	receives	more	credit	from	good	wins
(against	teams	with	few	losses)	than	from	unimpressive	wins	(against	teams	with	many	losses).
We	allow	teams	to	keep	some	of	their	credit	(the	equivalent	of	trucks	remaining	in	a	city),	but
bad	teams	get	to	keep	less	credit	than	good	teams.	Thus	good	teams	will	have	to	give	away
less	of	their	total	credit	than	bad	teams.

Once	we	decide	how	to	assign	credit	from	losing	teams	to	winning	teams,	our	model	will
represent	the	“flow	of	credit”	among	the	teams.	Since	credit	must	either	be	passed	to	a	winning
team	or	kept,	the	total	amount	of	credit	will	not	change	and	we	will	have	a	Markov	model.	By
dragging	the	model	down	far	enough,	we	will	get	a	stable	distribution	of	credit,	and	on	the
basis	of	that	distribution,	we	will	rank	our	teams	according	to	who	has	the	most	credit:	the
team	with	the	most	credit	will	be	number	1,	and	so	on.

The	passing	of	credit	from	1	team	to	another	is	certainly	more	abstract	than	the	idea	of	trucks
moving	from	one	city	to	another,	but	once	we	decide	how	exactly	to	assign	credit,	the
mathematics	is	the	same.	We	illustrate	the	entire	process	by	considering	a	5-team	league	where
each	team	plays	every	other	team	once.

Consider	5	teams:	the	Bears,	the	Cardinals,	the	Dolphins,	the	Eagles,	and	the	Falcons.	Wins
and	losses	from	the	entire	season	are	organized	in	Table	7.1.	As	we	move	across	a	row,	we



record	victories	for	the	row	team	over	the	column	team	with	a	“1.”

TABLE	7.1	Complete	Wins	and	Losses	for	a	5-Team	League

Teams Bears Cardinals Dolphins Eagles Falcons
Bears 0 1 1 0 0
Cardinals 0 0 1 1 0
Dolphins 0 0 0 1 0
Eagles 1 0 0 0 1
Falcons 1 1 1 0 0

Looking	at	the	first	row,	we	see	that	the	Bears	defeated	the	Cardinals	and	the	Dolphins	but	lost
to	the	Eagles	and	the	Falcons.	Similarly	the	Falcons	defeated	the	Bears,	the	Cardinals,	and	the
Dolphins	but	lost	to	the	Eagles.	From	the	point	of	view	of	going	down	a	column,	the	1’s
represent	losses	by	the	column	team	to	the	row	team.	We	compile	each	team’s	record	in	Table
7.2.

TABLE	7.2	Team	Records	for	a	5-Team	League

Team Wins Losses
Bears 2 2
Cardinals 2 2
Dolphins 1 3
Eagles 2 2
Falcons 3 1

Ordering	the	teams	by	wins	(or	winning	percentage)	gives	us	a	way	to	check	the
reasonableness	of	our	eventual	ranking:	the	Falcons	should	likely	be	number	1,	and	the
Dolphins	should	likely	be	last.	However,	the	middle	3	teams	all	have	identical	records	so	we
cannot	just	use	records	to	generate	a	definitive	ranking.

The	next	step	is	to	decide	how	much	of	its	credit	a	losing	team	should	give	to	a	winning	team.
In	keeping	with	our	belief	that	victories	over	good	teams	should	earn	more	credit	than	victories
over	poor	teams,	we	adopt	the	following	two	conventions:

1.	 The	proportion	of	the	losing	team’s	credit	that	a	winning	team	earns	is	 	where	L	is	the
number	of	losses	that	the	losing	team	has	suffered.

2.	 Every	team	keeps	any	credit	that	it	does	not	give	to	teams	that	defeated	it.

For	example,	the	Cardinals	lost	two	games:	one	to	the	Bears	and	one	to	the	Falcons.	Thus	for

the	Cardinals	 	,	and	the	Cardinals	will	give	 	of	its	credit	to	the	Bears,	 	of



its	credit	to	the	Falcons,	and	the	remaining	 	they	will	keep	for	themselves.

Similarly	the	Falcons	lost	only	to	the	Eagles,	so	the	Eagles	will	receive	 	of	the

Falcons’	credit	while	the	Falcons	keep	the	remaining	 	for	themselves.	Continuing	in	this	way
we	transform	Table	7.1,	which	records	only	wins	and	losses,	into	Table	7.3,	which	records	the
proportion	of	the	losing	team’s	credit	the	winning	team	receives.

TABLE	7.3	Proportions	of	Losing	Team’s	Credit	Given	to	Winning	Team

Teams Bears Cardinals Dolphins Eagles Falcons
Bears 0 1/4 1/5 0 0
Cardinals 0 0 1/5 1/4 0
Dolphins 0 0 0 1/4 0
Eagles 1/4 0 0 0 1/3
Falcons 1/4 1/4 1/5 0 0

Moving	across	the	first	row,	we	see	that	the	Bears	receive	 	of	the	Cardinals’	credit	and	 	of
the	Dolphins’	credit.	Note	the	Dolphins	lost	more	games	than	the	Cardinals,	so	the	Bears
receive	less	credit	for	beating	the	Dolphins.	We	can	also	view	the	table	by	moving	down	a

column.	Moving	down	the	column	for	the	Bears,	for	example,	we	see	that	the	Bears	give	 	of
their	credit	to	each	of	the	2	teams	that	beat	them:	the	Eagles	and	the	Falcons.

The	choice	of	 	as	the	proportion	of	credit	distributed	by	a	losing	team	is	in	a	sense	an

arbitrary	one.	We	want	the	proportion	to	be	less	than	 	,	for	example,	since	otherwise	a	team

would	distribute	all	of	its	credit	to	other	teams.	But	why	use	 	rather	than	 	or	 	?
There	is	really	no	definite	answer	to	that	question;	we	are	trying	to	strike	a	balance	between
losing	teams	distributing	enough,	but	not	too	much,	credit	to	winning	teams.	Different	choices
will	result	in	different	rankings,	and	it	is	up	to	the	modeler	to	decide	what	choice	seems	to
result	in	the	most	appropriate	rankings.	The	reader	is	invited	to	investigate	alternative	choices
in	the	exercises.	Next	we	show	how	to	generate	a	ranking	with	our	current	choice.

Example	7.8:

Rank	the	5	teams	using	a	Markov	model	for	the	flow	of	credit	among	them.

Following	our	usual	practice,	we	first	create	a	flow	diagram,	then	we	find	the
corresponding	DDS,	and	finally	we	implement	the	model	in	Excel.

Creating	a	table	like	Table	7.3	makes	it	easier	for	us	to	create	the	flow	diagram	for	the



flow	of	credit	among	the	teams.	Each	team	is	represented	by	an	oval,	and	the	proportion
of	credit	given	by	1	team	to	another	is	represented	by	an	arrow	connecting	the	two.	The
flow	diagram	for	our	5-team	league	is	given	in	Figure	7.9.	To	make	the	diagram	easier	to
read,	we	only	include	the	proportions	on	our	arrow	labels.

FIGURE	7.9	Flow	of	credit	among	5	teams.

Note	in	the	flow	diagram	that	both	conditions	of	Theorem	7.1	are	met:	it	is	possible	for
credit	to	flow	from	any	team	to	any	other	team	so	it	is	irreducible,	and	credit	may	remain
with	a	team	so	it	is	aperiodic.	Thus	our	model	is	guaranteed	to	have	a	positive	stable
distribution.	In	a	ranking	context	having	all	stable	distribution	percentages	be	positive
means	we	will	get	a	useful	ranking	that	applies	to	all	teams.

For	the	DDS	we	use	only	the	first	letter	of	each	team’s	name	to	keep	our	notation	as
simple	as	possible.	With	t	representing	steps	in	the	model	rather	than	time,	the	resulting
DDS	is



Implementing	this	DDS	in	Excel	is	no	more	difficult	than	it	was	for	the	truck	rental
example,	though	we	do	have	five	columns	now	rather	than	three.	Setting	up	a	general
model	is	more	difficult	because	we	have	a	large	number	of	parameters	that	all	depend	on
the	wins	and	losses	during	the	season.	For	now	we	content	ourselves	with	implementing
this	particular	example.	Since	we	are	interested	in	the	stable	distribution,	we	have
columns	for	percentages	for	each	team	as	well.	The	Excel	setup	with	the	formula	for	the
Bears	showing	is	given	in	Figure	7.10.

FIGURE	7.10	Excel	setup	for	a	5-team	ranking.

Unlike	the	truck	rental	example,	with	our	ranking	model	we	do	not	have	initial	values	to
plug	into	Excel.	However,	we	know	from	Theorem	7.1	that	we	are	going	to	get	a	positive
stable	distribution	so	the	initial	assignment	of	credit	should	not	matter—we	will	still	end
up	with	the	same	percentages	of	credit	for	each	team.	For	this	reason	it	will	be	our	custom
to	just	assign	initial	credit	equal	to	1	for	each	team.

In	Figure	7.11	we	show	the	output	of	the	Excel	model	with	most	rows	hidden.	By
experimenting	with	different	initial	amounts	of	credit,	we	can	verify	that	the	distribution	of
credit	does	not	change.	This	stable	distribution	is	the	basis	of	our	ranking	of	the	teams.	We
report	the	ranking	based	on	the	stable	distribution	in	Table	7.4.



FIGURE	7.11	Excel	output	for	a	5-team	ranking.

TABLE	7.4	Markov	Method	Rankings	for	a	5-Team	League

Team Credit	(%)
Falcons 30.34
Eagles 26.97
Cardinals 17.98
Bears 13.48
Dolphins 11.24

Note	how	the	rankings	agree	with	our	intuition	that	the	Falcons	should	be	the	highest
ranked	team	and	the	Dolphins	the	lowest.	Note	also	that	among	the	3	teams	with	a	2-2
record,	our	system	has	ranked	the	Eagles,	then	the	Cardinals,	then	the	Bears.	The	Eagles
had	the	“best	wins”—one	over	the	Falcons	(ranked	number	1)	and	one	over	the	Bears
(ranked	number	4).	The	Cardinals	had	wins	over	the	Eagles	(ranked	2)	and	the	Dolphins
(ranked	5),	and	the	Bears	had	wins	over	the	Cardinals	(ranked	3)	and	the	Dolphins
(ranked	5).	Our	Markov	system	has	rewarded	the	teams	who	have	victories	over	better
opponents	and	produced	a	sensible	ranking.

	

In	the	next	section	we	provide	an	interpretation	of	the	flow	diagram	for	credit	much	like	the
one	given	in	Section	7.1.4	for	the	flow	diagram	for	truck	rentals.

7.2.1	Interpreting	the	Flow	Diagram
The	interpretation	of	a	flow	diagram	in	the	context	of	ranking	football	teams	takes	some	getting
used	to.	As	we	move	from	one	step	to	the	next,	we	are	tracing	the	abstract	“flow	of	credit”

among	teams.	From	a	global	point	of	view,	we	say	that	from	one	step	to	the	next	 	of	the
Falcons’	credit	is	given	to	the	Eagles.	If	we	stretch	our	abstraction	a	little	farther,	we	can
consider	the	point	of	view	of	a	single	“unit	of	credit”	as	we	did	for	a	single	truck	in	the	rental
company	example.	We	imagine	the	unit	of	credit	flowing	from	1	team	to	any	of	the	teams	that



defeated	it.	If	our	unit	of	credit	starts	with	the	Falcons,	then	it	has	a	 	chance	of	flowing	to	the

Eagles	in	the	next	step	and	a	 	chance	of	staying	with	the	Falcons.	If	the	unit	does	flow	to	the

Eagles,	then	on	the	next	step	it	faces	a	 	chance	of	flowing	to	the	Bears,	a	 	chance	of	flowing

to	the	Cardinals,	and	a	 	chance	of	staying	with	the	Eagles.	Each	successive	step,	or	iteration,
of	our	model	traces	the	path	of	the	unit	of	credit	as	it	randomly	flows	among	the	teams.	The	unit
of	credit	is	taking	a	random	walk	among	the	teams.

From	a	global	point	of	view,	the	eventual	stable	distribution	shows	us	how	all	credit	is
distributed	among	teams.	From	the	point	of	view	of	an	individual	unit,	the	stable	distribution
tells	us	the	percentage	of	time	the	unit	spends	visiting	each	team.	The	higher	the	percentage,	the
more	credit	a	team	deserves.

7.2.2	Undefeated	and	Winless	Teams
The	presence	of	undefeated	teams	causes	a	problem	for	our	current	ranking	system.	To	see
why,	we	consider	the	effect	of	an	undefeated	team	on	our	flow	diagram.	A	team	with	no	losses
will	give	no	credit	to	any	other	team,	so	in	the	flow	diagram	the	oval	for	the	undefeated	team
will	have	inward-pointing	arrows	but	no	outward-pointing	arrows.	From	a	random	walk
perspective,	any	unit	of	credit	that	travels	to	the	undefeated	team	will	stay	there	permanently.
Ultimately	what	we	will	see	is	that	all	credit	will	end	up	with	the	undefeated	team.	In	terms	of
Theorem	7.1,	we	will	not	get	a	positive	stable	distribution	because	every	team	but	the
undefeated	team	ends	up	with	zero	credit.	This	happens	because	the	presence	of	an	undefeated
team	prevents	the	flow	diagram	from	being	irreducible:	it	is	no	longer	possible	to	travel
between	any	two	states.

We	illustrate	the	problem	in	the	next	example.

Example	7.9:

Consider	our	5-team	conference	from	before,	only	this	time	we	assume	the	Falcons	go
undefeated.	Rank	the	5	teams.

The	only	game	that	changes	is	the	one	between	the	Eagles	and	the	Falcons,	which	is	now	a
victory	for	the	Falcons.	The	season’s	wins	and	losses	are	summarized	in	Table	7.5.



TABLE	7.5	Season	Wins	and	Losses	with	Undefeated	Team

Teams Bears Cardinals Dolphins Eagles Falcons
Bears 0 1 1 0 0
Cardinals 0 0 1 1 0
Dolphins 0 0 0 1 0
Eagles 1 0 0 0 0
Falcons 1 1 1 1 0

As	before	we	use	the	season	wins	and	losses	to	compile	the	records	for	each	team	as
shown	in	Table	7.6.

TABLE	7.6	Season	W–L	Records	with	Undefeated	Team

Team Wins Losses
Bears 2 2
Cardinals 2 2
Dolphins 1 3
Eagles 1 3
Falcons 4 0

The	proportions	of	credit	that	are	transferred	change	because	the	Eagles	now	have	three
losses	and	no	win	over	the	Falcons.	These	are	shown	in	Table	7.7.	From	Table	7.7	we
construct	the	flow	diagram	given	in	Figure	7.12.

TABLE	7.7	Credit	Given	by	Losing	Teams	to	Winning	Teams	for	Example	7.9

Teams Bears Cardinals Dolphins Eagles Falcons
Bears 0 1/4 1/5 0 0
Cardinals 0 0 1/5 1/5 0
Dolphins 0 0 0 1/5 0
Eagles 1/4 0 0 0 0
Falcons 1/4 1/4 1/5 1/5 0



FIGURE	7.12	Credit	among	5	teams	with	undefeated	Falcons.

The	corresponding	DDS	is	now

Implementing	this	model	in	Excel	requires	only	minor	modifications	to	the	original.	Once
implemented	in	Excel	and	with	formulas	dragged	down	far	enough,	we	get	the	results
shown	in	Figure	7.13	with	most	rows	hidden.



FIGURE	7.13	Excel	results	for	5	teams	with	undefeated	Falcons.

Our	ranking	is	based	on	the	long-term	distribution	of	credit	shown	in	Table	7.8.	The
method	has	correctly	identified	the	Falcons	as	the	best	team,	but	it	has	broken	down	for
the	rest	of	the	rankings.	Because	the	Falcons	have	no	losses,	no	credit	flows	from	them	to
any	other	team.	Thus	all	credit	eventually	flows	to	the	Falcons	where	it	stops.	When	this
happens	we	say	the	team	is	an	absorbing	state,	and	we	note	that	the	presence	of	an
absorbing	state	automatically	prevents	the	diagram	from	being	irreducible.	We	can	spot
the	absorbing	state	on	the	flow	diagram	since	it	is	the	only	oval	with	no	outgoing	arrows.

TABLE	7.8	Stable	Distribution	of	Credit	when	Falcons	are	Undefeated

Team Credit	(%)
Falcons 100
Bears 0
Cardinals 0
Dolphins 0
Eagles 0

A	winless	team	presents	a	similar,	though	less	problematic,	issue.	The	oval	for	a	winless
team	will	have	only	outward-pointing	arrows.	Thus	a	winless	team	will	also	prevent	a
diagram	from	being	irreducible	since	no	credit	can	flow	to	it.	The	result	is	that	winless
teams	end	up	with	zero	credit,	and	so	we	do	not	get	a	positive	stable	distribution.
However,	the	presence	of	a	winless	team,	unlike	the	presence	of	an	undefeated	team,	does
not	prevent	the	model	from	ranking	the	rest	of	the	teams	sensibly.	The	good	news	is	that
the	fix	we	employ	in	the	following	to	deal	with	undefeated	teams	has	the	effect	of	fixing
the	issue	of	winless	teams	as	well.

When	all	teams	in	a	conference	play	each	other	exactly	once,	we	can	have	at	most	one
undefeated	team	(and	at	most	one	winless	team).	Since	we	know	that	team	to	be	the	best,
one	way	to	proceed	is	to	simply	remove	it	from	our	ranking	system	at	the	beginning	and
then	just	rank	the	remaining	4	teams.

First	we	adjust	the	season’s	win/loss	results	to	get	Table	7.9.



TABLE	7.9	Wins	and	Losses	with	Undefeated	Falcons	Removed

Teams Bears Cardinals Dolphins Eagles
Bears 0 1 1 0
Cardinals 0 0 1 1
Dolphins 0 0 0 1
Eagles 1 0 0 0

The	corresponding	table	of	credit	is	given	in	Table	7.10.

TABLE	7.10	Credit	Proportions	with	Undefeated	Falcons	Removed

Teams Bears Cardinals Dolphins Eagles
Bears 0 1/3 1/4 0
Cardinals 0 0 1/4 1/4
Dolphins 0 0 0 1/4
Eagles 1/3 0 0 0

The	DDS	is	then

After	modifying	our	Excel	model,	we	get	the	stable	credit	distribution	shown	in	Table
7.11.

TABLE	7.11	Ranking	Results	with	Undefeated	Falcons	Removed

Team Credit	(%)
Bears 36.36
Cardinals 27.27
Eagles 24.24
Dolphins 12.12

Thus	our	final	ranking	using	the	method	of	removing	the	undefeated	team	is

1.	 Falcons



2.	 Bears

3.	 Cardinals

4.	 Eagles

5.	 Dolphins

Note	that	this	result	does	not	agree	with	the	rankings	we	had	when	the	Falcons	were
included	as	a	1-loss	team.	This	makes	sense	because	with	the	Falcons	undefeated,	the
Eagles	have	one	fewer	wins	and	no	longer	receive	credit	for	being	the	only	team	to	defeat
the	Falcons.	Now	the	Bears	have	the	“best	wins”	and	are	rewarded	accordingly.

	

There	are	two	problems	with	the	approach	in	the	previous	example.	One	is	that	it	is	tedious	to
have	to	change	the	model.	Two	is	that	in	many	sports	such	as	college	football,	teams	do	not	all
play	each	other	so	it	is	possible	to	have	multiple	undefeated	teams.	How	do	we	decide	among
those?	What	we	would	like	is	a	method	that	will	work	even	if	undefeated	teams	are	included,
and	we	describe	one	way	to	accomplish	that	with	a	slight	adjustment	to	our	original	system.

The	problem	with	including	undefeated	teams	in	our	ranking	method	is	that	their	inclusion	in	a
flow	diagram	prevents	the	diagram	from	being	irreducible.	In	other	words,	as	soon	as	we
include	an	undefeated	team,	we	no	longer	satisfy	the	requirements	of	Theorem	7.1.	Thus
whatever	adjustment	we	make	to	our	model	for	undefeated	teams	will	necessarily	involve	the
undefeated	team	giving	some	credit	to	another	team;	that	is	the	only	way	to	keep	all	of	the
credit	from	getting	“stuck”	at	an	undefeated	team.

Our	approach	can	be	thought	of	as	a	“good	sport”	approach.	Here	we	require	that	all	losing
teams	receive	a	small	amount	of	credit	from	the	winner	just	for	playing.	In	this	way	we
guarantee	that	undefeated	teams	no	longer	create	an	absorbing	state	in	our	model	because
credit	must	flow	out	of	every	team	to	every	opponent.	We	also	guarantee	that	winless	teams
end	up	with	some	credit	for	participating.	There	is	something	appealing	about	this	approach:	it
seems	right	that	a	team	who	at	least	plays	should	receive	more	credit	than	one	who	sits	idle.

We	can	experiment	with	different	values	for	the	proportion	of	credit	to	assign	to	a	losing	team
just	for	playing,	but	we	should	at	least	be	careful	that	the	proportion	is	never	more	than	what	a
team	would	receive	for	winning.

The	least	proportion	of	credit	that	a	winning	team	can	possibly	receive	is	for	defeating	a
winless	team.	If	there	are	N	teams	in	the	league,	then	the	worst	possible	record	for	a	team
would	be	0	wins	and	 	losses.	Thus	the	least	proportion	of	credit	a	winning	team	can
receive	is	 	.	One	way	to	guarantee	that	credit	to	a	losing	team	never
exceeds	this	is	to	make	the	“just-for-playing”	proportion	of	credit	that	winning	teams	distribute
to	losing	teams	equal	to	 	.	As	long	as	 	we	will	have	 	.	The	reader	is	invited	to
verify	this	fact	in	the	exercises.



In	the	next	example	we	examine	the	effect	of	the	“just-for-playing”	adjustment	on	our	model.

Example	7.10:

Consider	again	our	5-team	conference	where	the	Falcons	are	undefeated.	Rank	the	5	teams
by	including	a	“just-for-playing”	credit	for	losing	teams.

Recall	that	the	season	results	are	given	in	Table	7.5	and	that	Table	7.6	gives	the	season
won/loss	records	for	all	teams.

The	table	of	proportions	of	credit	must	change	to	reflect	credit	given	to	losing	teams	just

for	playing,	in	this	case	 	.	We	see	the	result	in	Table	7.12.

TABLE	7.12	Credit	Given	to	Opponents	Including	Just-for-Playing	Adjustment

Teams Bears Cardinals Dolphins Eagles Falcons
Bears 0 1/4 1/5 1/25 1/25
Cardinals 1/25 0 1/5 1/5 1/25
Dolphins 1/25 1/25 0 1/5 1/25
Eagles 1/4 1/25 1/25 0 1/25
Falcons 1/4 1/4 1/5 1/5 0

The	inclusion	of	just-for-playing	credit	causes	dramatic	changes	in	the	flow	diagram	given
in	Figure	7.14.	As	we	see	in	Figure	7.14,	we	no	longer	have	an	absorbing	state	at	the
Falcons.	Credit	can	now	flow	from	any	team	to	any	other	team.	The	diagram	now	satisfies
the	requirements	of	Theorem	7.1,	so	we	are	guaranteed	that	the	method	will	produce	a
proper	ranking	of	all	5	teams.



FIGURE	7.14	Credit	among	5	teams	where	credit	is	given	just	for	playing.

The	DDS	for	the	model	is	now

In	Figure	7.15	we	show	the	Excel	model	with	the	formula	for	the	Bears	displayed.



FIGURE	7.15	Excel	setup	for	ranking	with	just-for-playing	credit.

After	modifying	our	Excel	model	and	finding	the	stable	distribution,	we	get	the	ranking
shown	in	Table	7.13.	This	ranking	agrees	with	the	ranking	we	produced	after	running	our
original	model	with	the	Falcons	removed.

TABLE	7.13	Ranking	with	Just-for-Playing	Credit

Team Credit	(%)
Falcons 58.80
Bears 12.30
Cardinals 11.06
Eagles 9.68
Dolphins 8.16

Our	choice	of	the	proportion	of	credit	to	assign	just	for	playing	accounted	for	the	fact	that	it
should	not	be	more	than	any	winning	team	can	receive	for	winning.	We	also	must	make	sure
that	the	total	proportion	of	credit	distributed	by	a	team	never	exceeds	1,	that	is,	that	a	team

never	distributes	more	than	100%	of	its	credit	to	other	teams.	In	fact	our	use	of	 	guarantees
this,	and	we	refer	the	reader	to	Appendix	F	for	a	verification	of	this	fact.

7.2.3	Equilibrium	Distribution
As	we	know	from	previous	sections,	we	can	find	the	equilibrium	distribution	for	our	Markov
models	by	employing	some	algebra.	Provided	our	flow	diagram	is	irreducible	and	aperiodic,
this	allows	us	to	find	the	positive	stable	distribution	of	credit,	and	hence	our	rankings,	without
having	to	resort	to	Excel.	Unfortunately	this	approach	is	difficult	to	carry	out	by	hand	for	even
a	modest	number	of	teams,	though	inputting	the	Excel	formulas	can	also	take	some	time.	For
our	5-team	conference	we	would	need	to	solve	a	system	of	five	equations	in	five	unknowns.

We	illustrate	the	procedure	with	an	example	using	4	teams	to	keep	the	algebra	manageable.



Example	7.11:

Consider	the	situation	where	we	removed	the	Falcons	and	then	ranked	the	remaining	4
teams	with	our	Markov	method	that	did	not	include	the	just-for-playing	adjustment.	The
DDS	for	this	situation	was	given	by

Letting	 	,	 	,	 	,	and	 	represent	the	equilibrium	values	for	each	team,	we	know
that	these	are	the	values	such	that	if	we	plug	them	into	the	right	side	of	the	system	we	get
them	out	on	the	left	side	as	well.	Thus	we	need	to	solve

As	in	the	truck	rental	example,	our	method	is	to	write	each	of	the	first	three	variables	in
terms	of	the	fourth.	Initial	simplifying	gives

We	note	that	the	system	has	a	trivial	solution	where	all	variables	are	equal	to	0,	but	it	is



not	a	solution	of	practical	interest.	Further	simplifying	allows	us	to	get	the	variables	
and	 	in	terms	of	 	:

Next	we	substitute	the	value	 	into	the	second	equation	to	get	 	in	terms	of	

	.	We	now	have	all	of	our	variables	in	terms
of	 	:

To	get	the	equilibrium	distribution,	we	must	finish	by	computing	the	percentages	for	each
equilibrium	value.	For	 	we	calculate

Note	that	this	value	agrees	with	the	one	found	by	Excel	in	Example	7.9.	The	computations
for	the	other	values	are	similar	and	also	agree	with	our	Excel	work.

	

Though	we	can	solve	these	kinds	of	systems	of	equations	by	hand	for	a	small	number	of	teams,
we	can	also	see	that	the	algebraic	method	soon	becomes	laborious.	Linear	algebra	is	a	branch
of	mathematics	that	provides	efficient	ways	of	solving	such	systems	using	matrices	and
vectors.	These	methods	are	beyond	the	scope	of	this	text,	but	a	quick	Internet	search	on	Markov
methods	will	show	that	the	techniques	of	linear	algebra	are	the	preferred	ways	of	analyzing



such	systems.

Even	with	the	tools	of	linear	algebra,	solving	a	system	with	a	large	number	of	variables	still
requires	the	use	of	software	to	solve	in	a	reasonable	amount	of	time.	Some	commercial
software	packages	that	will	solve	such	systems	are	Maple,	MATLAB,	and	Mathematica.	The
creators	of	Mathematica	have	put	a	feely	available	system	for	doing	complex	mathematical
computations	on	the	web	called	Wolfram	Alpha	(Wolfram,	2015).	If	you	are	careful	with	your
syntax,	Wolfram	Alpha	will	solve	systems	like	the	previous	one	in	seconds.

7.2.4	SEC	Football
To	conclude	this	section	we	rank	the	teams	from	the	2014	Southeastern	Conference	football
season.	With	14	teams	each	playing	eight	conference	games	(we	do	not	include	the
championship	here),	the	DDS	becomes	pretty	unwieldy,	as	does	the	Excel	implementation.
Thus	we	will	only	outline	the	setup	and	present	the	results.

The	2014	season	results	are	presented	in	Table	7.14.

TABLE	7.14	Complete	Wins	and	Losses	for	2014	SEC	Football

Team Alabama Arkansas Auburn Florida Georgia Kentucky LSU Miss.
St.

Missouri Ole
Miss

Alabama 0 1 1 1 0 0 1 1 0 0
Arkansas 0 0 0 0 0 0 1 0 0 1
Auburn 0 1 0 0 0 0 1 0 0 1
Florida 0 0 0 0 1 1 0 0 0 0
Georgia 0 1 1 0 0 1 0 0 1 0
Kentucky 0 0 0 0 0 0 0 0 0 0
LSU 0 0 0 1 0 1 0 0 0 1
Miss.	St. 0 1 1 0 0 1 1 0 0 0
Missouri 0 1 0 1 0 1 0 0 0 0
Ole	Miss 1 0 0 0 0 0 0 1 0 0
South
Carolina

0 0 0 1 1 0 0 0 0 0

Tennessee 0 0 0 0 0 1 0 0 0 0
Texas
A&M

0 1 1 0 0 0 0 0 0 0

Vanderbilt 0 0 0 0 0 0 0 0 0 0

The	records	of	each	team	are	given	in	Table	7.15.



TABLE	7.15	W–L	Records	for	2014	SEC	Football

Team Wins Losses
Alabama 7 1
Arkansas 2 6
Auburn 4 4
Florida 4 4
Georgia 6 2
Kentucky 2 6
LSU 4 4
Miss.	St. 6 2
Missouri 7 1
Ole	Miss 5 3
South	Carolina 3 5
Tennessee 3 5
Texas	A&M 3 5
Vanderbilt 0 8

After	carrying	out	our	ranking	method	with	just-for-playing	credit,	we	get	the	ranking	presented
in	Table	7.16.



TABLE	7.16	Ranking	for	2014	SEC	Football

Team Credit	(%)
Alabama 19.02
Ole	Miss 14.94
Georgia 10.57
Missouri 9.00
Auburn 8.43
Miss.	St. 8.05
LSU 6.93
Arkansas 5.85
South	Carolina 4.93
Florida 4.76
Texas	A&M 4.30
Tennessee 1.63
Kentucky 1.25
Vanderbilt 0.35

Our	method	has	produced	some	interesting	results.	First	we	note	that	Vanderbilt	as	the	only
winless	team	has	rightly	been	ranked	lowest.	Similarly,	Alabama,	as	1	of	2	teams	with	only
one	loss	has	reasonably	been	ranked	first.	The	fact	that	Alabama’s	wins	are	of	much	better
quality	than	Missouri’s	gives	Alabama	the	edge	between	the	two.	One	surprising	result	is	that
Ole	Miss,	a	team	with	a	5-3	record,	is	ranked	above	Georgia,	a	6-2	team,	and	Missouri,	a	7-1
team.	It	appears	that	Ole	Miss	has	gotten	a	lot	of	credit	for	being	the	only	team	to	defeat
Alabama.	Similarly,	Georgia	appears	to	have	been	given	a	lot	of	credit	for	being	the	only	team
to	defeat	Missouri.	While	it	does	appear	that	7-1	Missouri	is	being	short	changed	by	the
method,	it	is	also	true	that	Missouri’s	wins	are	overall	unimpressive.	In	fact,	if	we	take	the
total	number	of	wins	for	the	teams	that	Ole	Miss,	Georgia,	and	Missouri	defeated,	we	get	19,
18,	and	17,	respectively.	Even	though	Missouri	has	more	wins,	they	are	not	good	wins.	Their
best	win	is	over	4-4	Florida,	the	only	team	with	a	nonlosing	record	that	they	defeated.

We	see	a	similar	result	in	the	bottom	half	of	the	rankings	where	2-6	Arkansas	is	ranked	ahead
of	several	teams	with	better	records.	Arkansas	appears	to	have	received	a	lot	of	credit	for
quality	wins	over	6-2	Mississippi	State	and	4-4	LSU.

Even	though	we	can	make	an	argument	that	the	ranking	in	Table	7.16	is	reasonable,	it	does	go
against	our	intuition	in	a	few	instances.	The	point	of	playing	is	to	win	as	many	games	as
possible,	and	even	taking	into	account	strength	of	schedule,	it	is	difficult	to	justify	ranking	Ole
Miss	ahead	of	Missouri	or	Arkansas	ahead	of	Florida.	Our	method	seems	to	be	overvaluing
good	wins	and	undervaluing	just	winning.	In	the	exercises	the	reader	is	invited	to	modify	the
model	to	lessen	this	effect.



In	the	next	section	we	present	an	application	of	Markov	ranking	methods	to	Internet	searches.

7.2.5	Section	Exercises

1.	 Table	7.17	gives	the	results	of	a	season	of	games	with	no	undefeated	teams.	Rank	the	teams
using	the	Markov	method	from	Example	7.8.	Discuss	any	rankings	that	differ	from	your
expectations.

TABLE	7.17	Complete	Wins	and	Losses	for	a	6-Team	League

Teams Bears Cardinals Dolphins Eagles Falcons Giants
Bears 0 1 1 0 1 1
Cardinals 0 0 1 1 0 1
Dolphins 0 0 0 1 1 1
Eagles 1 0 0 0 1 0
Falcons 0 1 0 0 0 0
Giants 0 0 0 1 1 0

2.	 Table	7.18	gives	the	results	of	a	season	of	games	with	one	undefeated	team.	Use	the
Markov	method	including	the	just-for-playing	credit	to	rank	the	teams.	Discuss	any
rankings	that	differ	from	your	expectations.

TABLE	7.18	Complete	Wins	and	Losses	for	a	6-Team	League

Teams Bears Cardinals Dolphins Eagles Falcons Giants
Bears 0 1 1 1 1 1
Cardinals 0 0 1 1 0 1
Dolphins 0 0 0 1 1 1
Eagles 0 0 0 0 1 0
Falcons 0 1 0 0 0 0
Giants 0 0 0 1 1 0

3.	 If	teams	do	not	all	play	each	other,	it	is	possible	to	have	more	than	one	undefeated	team,
and	when	we	have	more	than	one	undefeated	team,	there	is	more	than	one	way	we	can
proceed	with	a	ranking.	One	way	is	to	use	the	just-for-playing	credit,	but	here	we	look	at
another	option	similar	to	Example	7.9:	instead	of	just-for-playing	credit,	we	can	first	use
our	original	ranking	method	on	all	teams,	then	we	remove	the	undefeated	teams	and	rerun
the	method.	Table	7.19	gives	the	results	of	a	season	of	games	with	2	undefeated	teams:

a.	 Rank	the	teams	without	the	just-for-playing	credit.

b.	 Interpret	the	results	of	the	ranking.



c.	 After	removing	the	undefeated	teams,	rerun	the	method.

d.	 Compare	the	final	ranking	of	this	method	with	the	ranking	produced	by	the	just-for-
playing	credit.

TABLE	7.19	Complete	Wins	and	Losses	for	a	6-Team	League

Teams Bears Cardinals Dolphins Eagles Falcons Giants
Bears 0 1 1 1 0 0
Cardinals 0 0 0 1 1 0
Dolphins 0 0 0 0 1 0
Eagles 0 0 0 0 0 0
Falcons 0 0 0 0 0 0
Giants 0 0 1 1 1 0

4.	 Table	7.20	gives	the	2014	NCAA	football	season	results	for	the	SEC	West.	Only	games
between	Western	division	teams	are	included.	Rank	the	teams.	Discuss	any	ranking	that
differs	from	your	expectations.

TABLE	7.20	Complete	Wins	and	Losses	for	2014	SEC	West

Teams Alabama Arkansas Auburn LSU Miss.	St. Ole	Miss Texas	A&M
Alabama 0 1 1 1 1 0 1
Arkansas 0 0 0 1 0 1 0
Auburn 0 1 0 1 0 1 0
LSU 0 0 0 0 0 1 1
Miss.	St. 0 1 1 1 0 0 1
Ole	Miss 1 0 0 0 1 0 1
Texas	A&M 0 1 1 0 0 0 0

5.	 Table	7.21	gives	the	2014	NCAA	football	season	results	for	the	SEC	East.	Only	games
between	Eastern	division	teams	are	included.	Rank	the	teams.	Discuss	any	ranking	that
differs	from	your	expectations.



TABLE	7.21	Complete	Wins	and	Losses	for	2014	SEC	East

Teams Florida Georgia Kentucky Missouri South
Carolina

Tennessee Vanderbilt

Florida 0 1 1 0 0 1 1
Georgia 0 0 1 1 0 1 1
Kentucky 0 0 0 0 1 0 1
Missouri 1 0 1 0 1 1 1
South
Carolina

1 1 0 0 0 0 1

Tennessee 0 0 1 0 1 0 1
Vanderbilt 0 0 0 0 0 0 0

6.	 Extension:	Many	sports	have	teams	play	each	other	more	than	once	during	a	season.	All
major	professional	team	sports	in	the	United	States,	for	example,	have	this	feature.	Discuss
whether	or	not	our	Markov	method	with	just-for-playing	credit	will	still	work	in	this
situation.

7.	 Extension:	For	a	sport	and	league	or	conference	of	your	choosing,	rank	the	teams	with	the
Markov	just-for-playing	method.

8.	 Prove	 	for	all	 	.

9.	 Extension:	Discuss	how	to	use	a	Markov	model	to	rank	the	importance	of	words	in	the
English	language.

7.3	GOOGLE	PAGERANK
Google	was	cofounded	by	Sergey	Brin	and	Lawrence	Page	who	met	while	studying	computer
science	at	Stanford	University	in	1995.	Having	started	Google	and	seen	it	grow	to	a	company
worth	about	$400	billion,	Brin	and	Page	each	currently	have	a	net	worth	of	about	$30	billion
(Forbes,	2015).	Together	the	pair	developed	what	is	now	known	as	the	Google	PageRank
algorithm	for	ranking	the	importance	of	webpages,	and	this	algorithm	is	the	basis	of	the	Google
search	engine	(Brin	&	Page,	1998).	When	a	search	term	is	entered	into	Google’s	search	engine,
the	results	of	the	search	are	relevant	webpages	that	are	ranked	from	most	to	least	important,	but
how	to	rank	webpages	in	this	way	is	not	obvious.

At	the	heart	of	the	Google	PageRank	algorithm	is	a	Markov	model	based	on	a	simple	idea:	the
importance	of	a	webpage	should	be	determined	by	how	many	webpages	link	to	it	and	how
important	those	pages	are.	As	we	will	see,	the	idea	is	very	similar	to	the	idea	of	sports	teams
giving	“credit”	to	teams	they	play,	only	in	the	context	of	the	worldwide	web,	each	webpage	is
a	state,	and	arrows	connecting	pages	represent	hyperlinks	from	one	webpage	to	another.	A
webpage	that	is	linked	by	many	webpages	will	be	assigned	a	higher	importance	than	one	that



has	few	links	from	other	pages.	The	notion	of	“web	importance”	is,	like	credit	given	to	a
winning	sports	team,	an	abstract	idea	meant	to	be	a	relative,	not	absolute,	measure.

We	illustrate	how	the	Google	PageRank	algorithm	works	by	considering	a	very	limited	Internet
consisting	of	only	six	webpages:	B,	C,	D,	E,	F,	and	G.	To	represent	the	web	as	a	flow	diagram,
we	let	each	page	be	an	oval,	and	we	let	each	hyperlink	from	one	page	to	another	be
represented	by	an	arrow	pointing	to	the	destination	page.	The	link	structure	for	our	miniature
Internet	is	shown	in	the	diagram	given	in	Figure	7.16.

FIGURE	7.16	Link	structure	for	a	6-page	web.

Webpages	that	have	links	to	many	others	are	often	referred	to	as	hubs,	while	pages	that	many
other	pages	link	to	are	called	authorities.	In	this	example	we	would	call	Page	G	a	hub	and
Page	C	an	authority.

In	the	example	that	follows,	we	show	how	to	take	the	link	structure	of	our	6-page	Internet	and



turn	it	into	a	ranking	of	the	pages’	importance.

Example	7.12:

Use	a	Markov	model	to	rank	the	6	pages,	B,	C,	D,	E,	F,	and	G,	in	order	of	importance.

First	we	need	to	assign	labels	to	the	hyperlink	diagram	in	Figure	7.16.	To	do	so	we	use	an
idea	very	similar	to	our	setup	for	ranking	sports	teams:	the	starting	webpage	distributes	its
importance	in	equal	proportions	to	each	destination	page	it	links	to.	For	example,	a
webpage	that	links	to	four	others	would	distribute	1/4	of	its	importance	to	each
destination	page.	Figure	7.17	shows	the	flow	diagram	for	our	miniature	web.

The	flow	diagram	depicts	the	possible	paths	a	web	surfer	can	take	by	clicking	on	links.
Note	that	because	each	webpage	distributes	all	of	its	importance	to	destination	pages,	the
surfer	must	leave	the	current	page	at	every	step,	t.	The	only	way	a	web	surfer	can	stay	on
a	page	from	one	step	to	the	next	is	if	there	are	no	outgoing	links	from	that	page.



FIGURE	7.17	Flow	diagram	for	web	importance	among	6	webpages.

We	construct	a	table	that	reflects	the	link	structure	in	our	diagram	as	well	as	how	much
importance	is	assigned	from	1	page	to	another.	(This	table	is	very	similar	to	the	table	of
how	credit	is	distributed	among	sports	teams.)	We	call	this	the	hyperlink	table,	HT,	and	it
is	given	in	Table	7.22.



TABLE	7.22	Hyperlink	Table	for	a	6-Page	Internet

HT B C D E F G
B 0 1/2 0 0 0 0
C 0 0 1/3 1 1/2 1/4
D 0 0 0 0 0 1/4
E 0 0 1/3 0 1/2 1/4
F 1/2 0 1/3 0 0 1/4
G 1/2 1/2 0 0 0 0

Columns	represent	outgoing	links/importance,	while	rows	represent	incoming
links/importance.	Moving	across	the	row	for	Webpage	C,	for	example,	we	see	that	C
receives	links	and	hence	importance	from	pages	D,	E,	F,	and	G.	Similarly,	moving	down
the	column	for	D	shows	that	page	D	links	to	pages	C,	E,	and	F,	and	so	it	distributes	1/3	of
its	importance	to	each	of	those	pages.

Corresponding	to	the	flow	diagram	and	Table	7.22,	the	DDS	for	the	system	is	given	by

Because	each	webpage	must	distribute	all	of	its	importance	at	each	time	step,	the	DDS
simplifies	quite	a	bit.	We	get



From	this	point	forward,	it	will	be	our	custom	to	begin	with	this	simplified	form	for	the
DDS.	As	in	the	case	of	sports	team	rankings,	we	think	of	t	as	representing	the	number	of
steps	or	iterations	of	our	model,	not	time.	Each	iteration	or	step	indicates	a	visit	to	the
next	webpage	by	a	web	surfer.

Entering	this	system	into	Excel	is	straightforward	if	a	bit	time	consuming,	and	it	is	very
similar	to	the	work	required	for	the	sports	team	ranking	examples.	We	include	columns	for
each	webpage	and	also	columns	for	the	distribution	of	importance	for	each	webpage.	The
setup	with	the	formula	for	Page	E	displayed	is	given	in	Figure	7.18.

FIGURE	7.18	Excel	setup	for	web	importance	for	a	6-page	web.

We	arbitrarily	let	all	webpages	start	with	a	value	of	1	for	importance.	We	drag	our
formulas	down	until	we	see	the	emergence	of	a	stable	distribution.	The	Excel	output	with
most	rows	hidden	is	shown	in	Figure	7.19.	By	experimenting	with	different	initial	values
of	importance,	we	can	gain	some	confidence	that	the	example	in	fact	has	a	positive	stable
distribution.



FIGURE	7.19	Excel	output	for	web	importance	for	a	6-page	web.

Once	we	have	the	distribution,	we	rank	the	pages	by	their	relative	importance	as	shown	in
Table	7.23.	It	should	not	be	a	surprise	that	C	is	ranked	highest	since	it	receives	links	from
4	of	the	other	pages.	What	may	be	surprising	are	the	next	2	pages	on	the	list,	G	and	B.
Both	of	these	pages	benefit	a	lot	from	the	fact	that	they	are	the	only	2	pages	receiving	links
from	the	most	important	page,	C.

TABLE	7.23	Webpages	Ranked	by	Their	Relative	Importance

Page Importance	(%)
C 29.09
G 21.82
B 14.55
E 14.55
F 14.55
D 5.45

In	the	next	section	we	consider	our	Markov	model	for	web	importance	from	the	point	of	view
of	a	web	surfer.

7.3.1	Interpreting	the	Flow	Diagram
From	a	global	perspective	the	flow	diagram	for	our	web	shows	the	proportion	of	importance
that	is	given	by	a	link’s	origination	page	to	its	destination	page.	However,	we	can	also	view
the	flow	diagram	from	an	individual	perspective.

If	we	consider	the	point	of	view	of	a	web	surfer,	then	when	visiting	a	webpage	with	outgoing
links	to	others,	the	proportions	represent	the	probability	of	the	web	surfer	choosing	to	click	on
a	particular	link.	For	a	webpage	with	outgoing	links	to	2	pages,	for	example,	there	is
probability,	1/2,	that	the	web	surfer	will	visit	either	page	next.	Thus	every	click	for	the	web
surfer	brings	them	to	a	new	webpage	from	which	they	make	another	random	decision	about
which	link	to	follow.	Continuing	in	this	way	the	web	surfer	engages	in	a	random	walk	among
the	webpages.	The	stable	distribution	of	importance	can	be	thought	of	as	the	percentage	of	time
the	web	surfer	spends	at	each	webpage.	The	more	important	the	page,	the	more	often	the	web



surfer	will	visit	it	and	the	more	time	on	average	the	web	surfer	will	spend	on	it.

In	the	next	two	sections,	we	illustrate	two	potential	problems	for	our	Markov	method	for
ranking	webpages,	and	we	show	how	Brin	and	Page	overcame	them.

7.3.2	Dangling	Nodes
Pages	with	no	links	to	others	are	called	dangling	nodes.	They	are	problematic	in	the	same	way
our	undefeated	sports	teams	were:	with	no	outward-pointing	arrows,	all	incoming	web
importance	gets	stuck	at	such	a	page.	Eventually	all	web	importance	will	end	up	at	such	a	page
and	our	ranking	system	will	fail	to	produce	a	useful	ranking.	This	is	a	serious	problem	for
PageRank	because	there	are	many	real	webpages	that	do	not	contain	links	to	others.	Brin	and
Page	employed	a	fix	for	dangling	nodes	similar	to	our	just-for-playing	credit	for	sports	teams.

Our	assumption	will	be	that	a	web	surfer	who	arrives	at	a	page	with	no	outward-pointing	links
will	not	actually	remain	there	indefinitely.	Instead	such	a	surfer	may	just	type	a	new	URL	into
the	browser	and	head	to	a	completely	unrelated	page.	Since	we	cannot	predict	where	such	a
surfer	will	go,	we	assume	that	the	next	destination	will	be	a	random	selection	with	every
webpage	having	the	same	chance	of	being	selected.

In	the	next	examples	we	illustrate	both	the	problem	and	the	solution	for	dangling	nodes.

Example	7.13:

Consider	our	mini-web	from	the	previous	example,	only	this	time	assume	there	is	no
outward	link	from	page	E	to	page	C.	Rank	the	webpages	in	order	of	importance.

After	eliminating	the	link	from	E	to	C,	our	hyperlink	table	changes.	The	result	is	Table
7.24.

TABLE	7.24	Hyperlink	Table	with	E	as	a	Dangling	Node

HT B C D E F G
B 0 1/2 0 0 0 0
C 0 0 1/3 0 1/2 1/4
D 0 0 0 0 0 1/4
E 0 0 1/3 0 1/2 1/4
F 1/2 0 1/3 0 0 1/4
G 1/2 1/2 0 0 0 0

The	new	table	brings	about	a	corresponding	change	in	the	simplified	DDS	as	well:



After	the	required	modifications,	if	we	run	our	Excel	model	for	this	DDS,	we	end	up	with
Table	7.25	for	rank	by	importance.	Note	that	this	is	not	a	useful	ranking.	Our	dangling
node	at	page	E	has	caused	all	of	the	importance	in	the	entire	web	to	be	collected	there.

TABLE	7.25	Rank	of	Importance	with	E	as	a	Dangling	Node

Page Importance	(%)
E 100
B 0
C 0
D 0
F 0
G 0

This	is	the	same	issue	we	ran	into	the	first	time	we	considered	an	undefeated	sports	team,
and	it	keeps	our	method	from	producing	a	useful	ranking.	We	get	a	flow	diagram	that	is	not
irreducible,	and	the	model	fails	to	have	a	positive	stable	distribution.

	

Next	we	show	how	to	implement	our	random	page	selection	idea	as	a	fix	for	the	dangling	node
problem.	We	assume	that	anyone	visiting	page	E	will	afterwards	have	an	equal	chance	of
jumping	to	any	of	the	6	webpages	by	typing	in	a	new	URL	or	remaining	on	the	current	page.
This	eliminates	the	dangling	node	problem	and	results	in	the	flow	diagram	given	in	Figure
7.20.



FIGURE	7.20	Flow	of	web	importance	with	dangling	node	fix.

Note	that	the	flow	diagram	is	now	both	irreducible	and	aperiodic	so	we	know	we	will	get	a
positive	stable	distribution.	Along	with	the	new	flow	diagram,	we	have	a	new	table	of	how
importance	is	distributed	to	destination	pages	that	we	call	the	modified	hyperlink	table,	 	,
shown	in	Table	7.26.



TABLE	7.26	Modified	Hyperlink	Table	After	Eliminating	Dangling	Node

B C D E F G
B 0 1/2 0 1/6 0 0
C 0 0 1/3 1/6 1/2 1/4
D 0 0 0 1/6 0 1/4
E 0 0 1/3 1/6 1/2 1/4
F 1/2 0 1/3 1/6 0 1/4
G 1/2 1/2 0 1/6 0 0

Now	we	are	ready	to	produce	a	useful	ranking.



Example	7.14:

Rerank	the	webpages	using	the	modified	hyperlink	table	given	in	Table	7.26.

First	we	have	the	corresponding	simplified	DDS:

Now	implementing	the	model	in	Excel	produces	the	ranking	given	in	Table	7.27.	This	is
clearly	a	more	useful	ranking	than	what	we	produced	with	E	as	a	dangling	node.

TABLE	7.27	Ranking	After	Dangling	Node	has	been	Eliminated

Page Importance	(%)
C 20.11
E 20.11
G 20.11
F 17.88
B 13.41
D 8.38

In	the	next	section	we	examine	another	complication	for	the	Markov	ranking	method	that	is
closely	related	to	the	dangling	node	issue.

7.3.3	The	Presence	of	Subwebs
In	Section	7.3.2	we	saw	that	a	dangling	node	caused	our	Markov	page	ranking	method	to	fail
because	of	the	lack	of	irreducibility.	We	fixed	the	dangling	node	issue	by	forcing	dangling



nodes	to	distribute	their	importance	equally	among	all	webpages.

In	this	section	we	consider	a	related	problem:	the	possibility	of	a	subweb.	If	our	web	turns	out
to	have	a	subset	of	webpages,	possibly	with	links	among	each	other,	for	which	it	is	not
possible	to	move	to	a	webpage	outside	of	the	subset,	we	have	what	we	call	a	subweb.	The
presence	of	a	subweb	means	that	the	flow	diagram	will	not	be	irreducible	since	it	will	not	be
possible	to	move	between	any	pair	of	webpages:	once	we	get	to	the	subweb,	we	will	be	stuck
there.

If	we	encounter	a	subweb,	our	ranking	system	to	this	point	can	give	strange	results.	We
examine	one	such	possibility	in	the	following	example.

Example	7.15:

Rank	the	importance	of	webpages	in	an	8-page	web	given	the	link	structure	represented	in
Figure	7.21.



FIGURE	7.21	Link	structure	for	an	8-page	web.

With	the	links	pictured	in	Figure	7.21,	the	corresponding	importance	labels	are	as	in
Figure	7.22.	Thus	the	hyperlink	table	is	given	by	Table	7.28.	There	are	no	dangling	nodes,
so	we	do	not	need	to	modify	the	hyperlink	table.	The	corresponding	simplified	DDS	is
given	by



FIGURE	7.22	Assignment	of	importance	for	an	8-page	web.



TABLE	7.28	Hyperlink	Table	for	an	8-Page	Web

B C D E F G H I
B 0 1/2 1/4 0 0 0 0 0
C 0 0 0 1/4 0 0 0 0
D 1 0 0 1/4 0 0 0 0
E 0 1/2 1/4 0 0 0 0 0
F 0 0 1/4 1/4 0 1/2 1/3 1/2
G 0 0 1/4 1/4 1/2 0 1/3 0
H 0 0 0 0 0 1/2 0 1/2
I 0 0 0 0 1/2 0 1/3 0

Implementing	the	DDS	in	Excel	with	initial	values	of	importance	all	set	to	1,	we	get	the
rankings	presented	in	Table	7.29.



TABLE	7.29	Rankings	by	Importance	for	an	8-Page	Web	with	Subweb

Page Importance	(%)
F 30.77
G 23.08
H 23.08
I 23.08
B 0
C 0
D 0
E 0

This	is	a	strange	result.	Pages	B,	C,	D,	and	E	all	have	incoming	links,	so	they	receive
importance	from	other	webpages,	but	they	still	end	up	with	0	importance.	The	reason	is
that	pages	F,	G,	H,	and	I	form	a	subweb	that	contains	links	among	themselves,	has
incoming	links	from	B,	C,	D,	and	E	but	has	no	outgoing	links	to	B,	C,	D,	and	E.	This	gives
us	another	example	of	a	flow	diagram	that	is	not	irreducible.	We	cannot	travel	between
every	pair	of	pages	because	there	is	no	way	to	get	from	F,	G,	H,	or	I	to	pages	B,	C,	D,	and
E.	All	importance	eventually	ends	up	in	the	subweb	so	that	those	pages	are	the	only	ones
that	end	up	with	a	useful	ranking.	We	get	a	stable	distribution	just	not	a	positive	one.

	

The	last	step	in	completing	the	Google	PageRank	algorithm	is	to	eliminate	the	possibility	of
subwebs.	We	do	this	by	following	Brin	and	Page	in	modeling	more	realistic	behavior	in	web
surfers.	People	who	are	surfing	the	web	do	not	necessarily	follow	links	from	1	page	to
another:	just	as	they	would	from	a	page	with	no	links,	surfers	might	at	any	time	type	in	a	URL
to	jump	to	any	page	on	the	web.	In	accounting	for	this	possibility,	we	connect	every	webpage
with	every	other	webpage	and	thus	guarantee	that	the	web	is	irreducible	and	aperiodic.	It	will
therefore	have	a	positive	stable	distribution.

We	start	by	creating	a	table	that	models	the	situation	where	a	web	surfer	can	go	from	any
webpage	to	any	other	webpage	with	equal	likelihood,	including	staying	on	the	current	page.
The	table	is	not	too	difficult	to	create:	if	we	let	N	be	the	total	number	of	webpages	in	our	web,

then	we	will	have	N	rows,	N	columns,	and	we	let	every	entry	be	 	.	For	our	8-page	web	from
Example	7.15,	this	gives	us	Table	7.30.



TABLE	7.30	Teleportation	Table	for	an	8-Page	Web

T B C D E F G H I
B 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
C 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
D 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
E 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
F 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
G 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
H 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
I 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Because	this	table	represents	a	surfer’s	ability	to	go	to	any	webpage	from	any	webpage,	we
refer	to	it	as	the	teleportation	table,	T.	We	interpret	this	table	in	a	way	that	is	similar	to	the
just-for-playing	credit	in	the	context	of	sports	teams.	Just	by	virtue	of	being	a	page	on	the	web,
all	pages	receive	some	importance	from	every	other	page.

The	next	step	is	to	somehow	combine	this	table	with	the	modified	hyperlink	table,	 	,	in	a
way	that	keeps	the	sum	of	entries	in	each	column	equal	to	one.	If	we	were	to	simply	add	the
two	tables	together,	we	would	get	columns	whose	entries	sum	to	more	than	one	and	that	would
result	in	pages	transferring	more	than	100%	of	their	importance	to	others.

The	way	we	avoid	this	potential	excess	of	importance	is	to	introduce	a	new	parameter.	The
idea	is	that	at	every	time	step,	a	web	surfer	has	two	options:	either	follow	one	of	the
hyperlinks	on	the	current	page	or	“teleport”	to	another	by	typing	in	a	randomly	selected	URL.
The	new	parameter	represents	the	probability	that	a	web	surfer	will	elect	to	follow	a	link
versus	teleporting	to	another	page.	We	call	this	parameter	the	Google	parameter,	α;	it	is	the
probability	that	a	web	surfer	will	follow	one	of	the	provided	hyperlinks	from	the	current	page.
This	makes	 	the	probability	that	the	surfer	will	choose	to	teleport	instead.	For	example,
if	 	,	then	at	every	step	there	is	an	85%	chance	that	a	web	surfer	will	follow	a	hyperlink
and	a	15%	chance	that	the	surfer	will	type	in	a	new	URL	and	teleport	to	another	page.

We	use	α	to	combine	the	modified	hyperlink	table,	 	,	with	the	teleportation	table,	T.	The
final	table	will	be	the	sum	of	α	times	the	modified	hyperlink	table	plus	 	times	the
teleportation	table.	We	can	experiment	with	different	values	for	α,	but	for	now,	we	use	a
common	estimate	for	the	value	Google	uses:	 	.	We	call	the	final	table	the	Google
table,	GT,	where

We	illustrate	how	the	Google	table	is	constructed	with	the	8-page	web	from	Example	7.15.	In
that	example	there	were	no	dangling	nodes	so	the	modified	hyperlink	table	is	the	same	as	the
original,	that	is,	 	.



We	calculate	α	times	the	modified	hyperlink	table,	 	,	by	multiplying	each	entry	of	 	by	α.
Because	rounding	errors	can	cause	problems	for	us	later	in	Excel,	we	use	fractions	rather	than

decimals	so	 	.	The	result	is	given	in	Table	7.31.

TABLE	7.31	Modified	Hyperlink	Table	Times	α

B C D E F G H I

B 0 0 0 0 0 0

C 0 0 0 0 0 0 0

D 0 0 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0

G 0 0 0 0

H 0 0 0 0 0 0

I 0 0 0 0 0 0

We	also	need	to	form	 	by	multiplying	each	entry	of	the	teleportation	table	by	

	.	The	resulting	table	is	given	in	Table	7.32.

TABLE	7.32	(1 − α) × T	for	an	8-Page	Web

B C D E F G H I

B

C

D

E

F

G

H

I

Finally	we	form	the	Google	table,

by	adding	the	corresponding	entries	from	Tables	7.31	and	7.32	together.	The	result	is	presented



in	Table	7.33.	Note	that	if	we	sum	the	proportions	of	importance	given	out	by	a	webpage	by
adding	entries	down	the	appropriate	column,	we	get	exactly	one	as	required.

TABLE	7.33	The	Google	Table	for	an	8-Page	Web	with	α = 0.85

B C D E F G H I

B

C

D

E

F

G

H

I

In	our	next	example	we	examine	the	effect	of	using	the	Google	table	to	rank	the	webpages	from
Example	7.15	where	we	had	an	8-page	web	that	included	a	subweb.

Example	7.16:

Use	the	Google	table	in	Table	7.33	to	rerank	the	webpages	from	Example	7.15	in	order	of
importance.

Using	the	Google	table	instead	of	the	hyperlink	table	to	produce	our	ranking	means	we
have	to	reconstruct	our	DDS.	As	with	the	modified	hyperlink	table,	the	use	of	the	Google
table	means	it	is	possible	for	a	web	surfer	to	remain	on	the	same	webpage	for	more	than
one	time	step.	We	can	view	the	entries	along	the	main	diagonal	as	a	webpage	distributing
importance	to	itself	or	as	just	the	remaining	importance	that	is	not	distributed	to	other
pages.

In	the	corresponding	simplified	DDS	below,	we	suppress	the	 	on	the	right	to	make
the	equations	easier	to	read.



After	implementing	the	DDS	in	Excel	and	assigning	initial	values	of	importance,	we	drag
the	formulas	down	until	we	reach	the	positive	stable	distribution,	which	we	know	from
Theorem	7.1	will	exist.	The	result	is	given	in	Table	7.34.

TABLE	7.34	Ranking	of	Importance	by	Google	Table	for	an	8-Page	Web

Webpage Importance	(%)
F 25.50
G 20.19
H 18.03
I 17.82
D 6.64
B 4.49
E 4.49
C 2.83

Every	webpage	is	now	assigned	a	positive	percentage	of	importance,	and	the	Google
method	has	ranked	all	webpages	in	a	sensible	way.	Furthermore	the	Google	method	has
broken	what	was	a	3-way	tie	for	second	in	Example	7.15.

	

In	the	next	section	we	indicate	how	to	derive	the	equilibrium	distribution	for	a	web



algebraically.

7.3.4	Equilibrium	Points
As	we	mentioned	in	Section	7.2.3,	we	can	find	the	equilibrium	distribution	for	the	systems	in
this	chapter	by	hand.	For	the	previous	example	we	would	find	points	

	such	that

Though	we	could	solve	this	system	by	hand,	it	would	certainly	take	a	long	time,	and	with	so
much	algebra	to	do	there	would	be	a	high	likelihood	of	making	a	mistake	along	the	way.	This	is
the	kind	of	system	we	would	instead	solve	using	a	computer	algebra	system	such	as	Maple,
Mathematica,	or	MATLAB.

Once	we	have	the	equilibrium	point	 	,	we	can	determine	the
equilibrium	distribution.	Page	B,	for	example,	will	end	up	with	proportion	of	web	importance
equal	to

Because	the	Google	PageRank	method	imposes	structure	on	our	flow	diagram	that	guarantees
both	irreducibility	and	aperiodicity,	our	algebraic	solution	for	the	equilibrium	distribution	is
certain	to	be	the	positive	stable	distribution	for	the	model.	Hence	we	can	use	it	rather	than
Excel	to	produce	the	webpage	importance	rankings.

7.3.5	PageRank	Summary



We	have	shown	how	to	rank	webpages	by	importance	using	the	link	structure	of	the	web.	The
steps	of	the	method	are	outlined	below:

1.	 Create	a	hyperlink	table	that	shows	how	much	importance	a	webpage	distributes	to	those	it
links	to.	The	fraction	of	importance	given	to	each	destination	page	is	the	reciprocal	of	the
number	of	outgoing	links.

2.	 Fix	any	dangling	nodes	by	creating	the	modified	hyperlink	table.	This	is	done	by	forcing
any	dangling	nodes	to	distribute	their	importance	equally	to	every	page	on	the	web.

3.	 Fix	any	subwebs	by	forming	the	Google	table.	This	is	done	by	first	creating	the
teleportation	table	that	represents	a	web	surfer’s	ability	to	visit	any	page	on	the	web	at	any
time	by	typing	in	a	URL.	Next	we	combine	the	modified	hyperlink	table	with	the
teleportation	table	using	the	Google	parameter.

4.	 From	the	Google	table	we	form	a	DDS,	implement	the	DDS	in	Excel,	find	the	long-term
distribution	of	importance,	which	Theorem	7.1	now	guarantees,	and	finally	rank	the
webpages	in	order	of	importance.

With	approximately	1	billion	active	websites	currently	on	the	Internet	(Internet	Live	Stats,
2015),	ranking	webpages	in	the	way	we	have	shown	clearly	involves	practical	issues	beyond
the	basic	idea	of	the	method.	Our	tables,	for	example,	would	require	about	1	billion	rows	and
1	billion	columns	each.	Furthermore,	we	would	have	to	map	the	entire	link	structure	of	the
web.	Information	on	how	to	deal	with	these	practical	difficulties	can	be	found	in	other	sources,
including	(Brin	&	Page,	1998;	Langville	&	Meyer,	2006).

7.3.6	Section	Exercises

1.	 Determine	whether	the	web	represented	in	Figure	7.23	contains	any	dangling	nodes	or
subwebs.



FIGURE	7.23	Web	structure	for	Exercise	1.

2.	 Determine	whether	the	web	represented	in	Figure	7.24	contains	any	dangling	nodes	or
subwebs.



FIGURE	7.24	Web	structure	for	Exercise	2.

3.	 Determine	whether	the	web	represented	in	Figure	7.25	contains	any	dangling	nodes	or
subwebs.



FIGURE	7.25	Web	structure	for	Exercise	3.

4.	 Determine	whether	the	web	represented	in	Figure	7.26	contains	any	dangling	nodes	or
subwebs.



FIGURE	7.26	Web	structure	for	Exercise	4.

5.	 Consider	the	web	represented	in	Figure	7.23:

a.	 Label	the	arrows	with	the	proportions	of	importance	that	each	origination	page
distributes	to	the	destination	page.

b.	 Create	a	hyperlink	table	from	the	flow	diagram.

c.	 Fix	any	dangling	nodes	by	creating	the	modified	hyperlink	table.

d.	 Form	the	teleportation	table.

e.	 Fix	any	subwebs	by	forming	the	Google	table.

f.	 Rank	the	webpages	in	order	of	importance.

6.	 Consider	the	web	represented	in	Figure	7.24:

a.	 Label	the	arrows	with	the	proportions	of	importance	that	each	origination	page



distributes	to	the	destination	page.

b.	 Create	a	hyperlink	table	from	the	flow	diagram.

c.	 Fix	any	dangling	nodes	by	creating	the	modified	hyperlink	table.

d.	 Form	the	teleportation	table.

e.	 Fix	any	subwebs	by	forming	the	Google	table.

f.	 Rank	the	webpages	in	order	of	importance.

7.	 Consider	the	web	represented	in	Figure	7.25:

a.	 Label	the	arrows	with	the	proportions	of	importance	that	each	origination	page
distributes	to	the	destination	page.

b.	 Create	a	hyperlink	table	from	the	flow	diagram.

c.	 Fix	any	dangling	nodes	by	creating	the	modified	hyperlink	table.

d.	 Form	the	teleportation	table.

e.	 Fix	any	subwebs	by	forming	the	Google	table.

f.	 Rank	the	webpages	in	order	of	importance.

8.	 Consider	the	web	represented	in	Figure	7.26.

a.	 Label	the	arrows	with	the	proportions	of	importance	that	each	origination	page
distributes	to	the	destination	page.

b.	 Create	a	hyperlink	table	from	the	flow	diagram.

c.	 Fix	any	dangling	nodes	by	creating	the	modified	hyperlink	table.

d.	 Form	the	teleportation	table.

e.	 Fix	any	subwebs	by	forming	the	Google	table.

f.	 Rank	the	webpages	in	order	of	importance.



8
BODY	WEIGHT	AND	BODY	COMPOSITION
In	this	chapter	we	present	some	models	for	projecting	weight	and	body	composition	changes
brought	about	by	changes	in	diet	or	activity	level.	However,	it	is	important	to	understand	that
weight	management	is	a	complex	issue	that	involves	many	behavioral	and	societal	factors
beyond	the	scope	of	this	book.	Models	like	the	ones	we	develop	can	predict	weight	changes
based	on	assumed	eating	habits,	but	they	cannot	explain	why	individuals	may	have	the	eating
habits	they	do,	nor	should	the	models	be	used	to	recommend	a	particular	diet.

Furthermore,	the	models	in	this	chapter	deal	almost	entirely	with	“calories	in”	and	“calories
out.”	With	the	exception	of	the	Weight	Watchers™	model	in	Section	8.6,	they	make	no
distinction	between	calories	that	come	from	soda	and	calories	that	come	from	spinach.	Clearly
one	is	healthier	than	the	other,	but	by	and	large	our	models	will	not	address	this	issue.

What	our	models	can	do	is	predict	weight	change	based	on	a	given	caloric	intake	and	activity
level,	and	these	predictions	can	be	tailored	to	the	individual	user.	Along	with	models	for
predicting	weight	change,	we	present	some	common	ways	of	determining	a	healthy	weight	or
body	composition	for	a	given	individual.

Though	they	are	certainly	related,	there	is	a	distinction	between	weight	and	health,	and	our
models	deal	primarily	with	weight.	We	should	keep	in	mind	that	even	under	established
guidelines	for	what	is	considered	a	healthy	weight,	there	are	no	absolutes.	An	overweight
person	may	be	metabolically	healthy,	while	a	thin	person	or	person	with	normal	body	weight
may	be	very	unhealthy	(Ortega	et	al.,	2013).	Obsessing	over	body	weight	is	definitely	not
healthy	and	can	be	a	sign	of	a	serious	underlying	eating	disorder.	Ultimately	our	focus	should
be	on	health	and	well-being	and	not	body	weight.	We	take	a	step	in	this	direction	later	in	the
chapter	when	we	shift	our	modeling	focus	from	body	weight	to	body	composition.

8.1	CONSTANT	CALORIE	EXPENDITURE
Mathematical	models	for	weight	change	are	based	on	the	energy	balance	principle,	which	is
an	application	of	the	first	law	of	thermodynamics	(Thomas	et	al.,	2009).	In	the	context	of	body
weight,	the	energy	balance	principle	states	that	if	more	calories	are	consumed	than	burned,	then
weight	increases	(i.e.,	the	excess	energy	must	be	stored	in	the	body),	and	if	more	calories	are
burned	than	consumed,	then	weight	decreases	(i.e.,	energy	stored	in	the	body	must	be	used	to
make	up	the	difference).	Thus,	according	to	the	energy	balance	principle,	we	can	predict
changes	in	weight	by	keeping	careful	track	of	“calories	in”	and	“calories	out.”

As	a	first	attempt	at	modeling	weight	changes,	we	make	two	simplifying	assumptions:	(1)	that	1
pound	of	body	weight	contains	3500	calories	of	energy	and	(2)	that	an	individual	burns	a
constant	number	of	calories	per	day.	Hence	in	order	to	lose	1	pound	of	weight,	an	individual
must	create	a	net	calorie	deficit	of	3500	calories.	We	note	that	in	the	context	of	diet	and	weight



loss	when	the	term	calorie	is	used,	it	actually	refers	to	kilocalories	(kcal).	In	keeping	with
standard	usage,	we	will	use	calorie	and	kcal	interchangeably.

Let	t	represent	time	in	days	and	 	body	weight	in	pounds	after	t	days.	We	illustrate	the	most
basic	model	for	 	with	the	example	below.

Example	8.1:

Set	up	a	model	for	weight	change	in	an	individual	who	burns	2000	calories	per	day	and
follows	a	diet	consisting	of	1900	calories	per	day.

By	burning	more	calories	than	are	being	consumed,	the	individual	should	lose	weight.	(In
fact	under	our	current	assumptions,	the	individual	should	lose	1	pound	every	35	days.)
Figure	8.1	shows	the	flow	diagram	for	the	situation	after	converting	calories	to	pounds.
Using	the	standard	3500	calories	per	pound,	we	have	an	increase	in	body	weight	of	

	pounds	per	day	and	a	decrease	in	body	weight	of	 	pounds	per
day.

The	corresponding	DDS	for	the	model	is	given	by	 	or	
.	According	to	the	model,	each	day	this	individual	will	lose	0.028

pounds.

FIGURE	8.1	Constant	calorie	flow	diagram	for	Example	8.1.

More	generally	if	we	let	the	daily	calorie	intake	be	the	constant,	 ,	and	the	daily	calorie
expenditure	be	the	constant,	 ,	our	flow	diagram	will	be	as	shown	in	Figure	8.2.



FIGURE	8.2	General	constant	calorie	expenditure	flow	diagram.

Correspondingly,	our	more	general	DDS	is	given	by

If	we	store	our	initial	weight,	daily	intake,	and	daily	expenditure	as	parameters	in	Excel,	our
spreadsheet	setup	with	body	weight	formula	showing	will	appear	as	in	Figure	8.3.

FIGURE	8.3	Excel	setup	for	constant	calorie	expenditure	model.

Note	that	as	usual	we	use	absolute	addressing	when	referring	to	the	intake	and	expenditure
parameters.	The	following	example	provides	a	quick	check	of	our	work.



Example	8.2:

John	currently	weighs	215	pounds.	Assuming	he	consumes	1750	calories	per	day	and
burns	2200	calories	per	day,	predict	John’s	weight	2	weeks	from	today.

This	is	a	straightforward	application	of	the	model.	We	type	in	the	correct	parameter
values,	copy	our	formulas	down,	and	then	note	the	weight	after	day	14.	The	results	are
shown	in	Figure	8.4.	The	model	predicts	that	John	will	weigh	213.2	pounds	in	2	weeks.

FIGURE	8.4	Excel	results	for	Example	8.2.

Next	we	take	a	look	at	equilibrium	values	for	the	model.

8.1.1	Equilibrium	Analysis
Finding	equilibrium	values	for	the	constant	calorie	model	requires	that	we	find	values	for	

such	that	 .	After	canceling	the	 	on	both	sides	of	the	equation,	we	are

left	with	 .	This	implies	that	the	only	way	for	us	to	have	an	equilibrium	value	is	if
,	and	if	this	is	the	case,	we	will	have	an	equilibrium	regardless	of	the	actual	body



weight.	This	result	should	appeal	to	our	intuition:	if	we	burn	the	same	number	of	calories	that
we	consume,	then	our	weight	should	not	change.
While	this	constant	calorie	model	has	the	benefit	of	simplicity,	it	also	has	serious	limitations.
First,	the	model’s	long-term	predictions	are	unreasonable:	in	the	long	run	it	predicts	an	infinite
weight	if	 	and	a	negative	weight	if	 .	Second,	the	model	assumes	that	both	 	and	
	are	constants.	We	can	always	arrange	for	 	to	be	constant	by	carefully	tracking	our	diet	and

counting	calories,	but	our	daily	calorie	expenditure	 	is	more	problematic.	In	general	 	is
not	a	constant	but	instead	depends	on	factors	such	as	body	weight,	sex,	and	body	composition.
In	subsequent	sections	we	explore	ways	of	finding	estimates	for	 .

8.1.2	Section	Exercises

1.	 Implement	the	constant	calorie	expenditure	model	with	Excel	using	your	own	body	weight
and	calorie	parameters.	Note	what	the	model	predicts	for	your	body	weight	over	1	week,	1
month,	6	months,	1	year,	and	5	years.	At	what	point	does	the	model	start	to	become
unreasonable?

2.	 Suppose	your	daily	intake	and	expenditure	are	equal	so	that	your	body	weight	is	in	an
equilibrium	state.	Use	Excel	to	show	that	the	state	is	unstable	with	regard	to	changes	in
intake	or	expenditure.

3.	 Suppose	someone	consumes	100	calories	per	day	more	than	they	burn.	How	much	weight
will	the	person	gain	over	a	2-week	period?

4.	 What	would	be	the	required	daily	calorie	deficit	for	someone	who	wants	to	lose	10	pounds
in	30	days?

5.	 How	long	will	it	take	to	lose	10	pounds	with	a	calorie	deficit	of	1	calorie	per	day?

6.	 Extension:	As	we	age	we	typically	burn	fewer	calories,	largely	due	to	a	decrease	in	lean
muscle	mass.	A	good	estimate	for	the	age	effect	on	calorie	expenditure	is	that	we	burn	5
fewer	calories	per	day	for	each	year	we	age.

a.	 Modify	the	constant	expenditure	model	to	reflect	this	fact.

b.	 Use	the	new	model	and	your	parameters	from	Exercise	to	project	your	body	weight
over	1	week,	1	month,	6	months,	1	year,	and	5	years.

c.	 Has	the	prediction	changed	significantly	from	the	original?

8.2	VARIABLE	CALORIE	EXPENDITURE
It	is	difficult	to	know	with	certainty	how	many	calories	an	individual	will	burn	on	a	daily
basis.	It	can	also	be	medically	important	to	know	when	a	physician	needs	to	carefully	control	a
patient’s	caloric	intake.	An	off-the-cuff	guess	as	in	the	previous	section	will	not	suffice	if	we
hope	to	create	a	realistic	model.

A	first	step	in	estimating	calorie	needs	is	to	find	an	individual’s	resting	energy	expenditure



(REE).	REE	is	the	number	of	calories	an	individual	burns	at	rest,	and	it	serves	as	a	baseline
for	calories	burned	before	taking	into	account	daily	activities	or	exercise.	We	should
intuitively	expect	that	larger	individuals	burn	more	calories	than	smaller	ones,	and	we	will	see
that	this	is	generally	true.

The	most	reliable	method	for	actually	measuring	(as	opposed	to	estimating)	REE	is	a	kind	of
breath	test	known	as	indirect	calorimetry.	With	this	test	energy	expenditure	is	calculated	by
measuring	the	amount	of	oxygen	taken	in	and	the	amount	of	carbon	dioxide	exhaled	in	the
breath	(Haugen,	Chan,	&	Li,	2007).	Indirect	calorimetry	is	not	a	common	test	for	healthy
individuals,	but	its	increasing	availability	and	decreasing	cost	have	made	it	feasible	for	an
interested	individual	to	have	the	test	done.	Still,	we	cannot	assume	that	an	individual	will	have
the	means,	access,	or	desire	to	actually	measure	their	REE,	so	for	the	purposes	of	our	model,
we	estimate	REE	using	equations	developed	by	other	researchers	for	this	purpose.

8.2.1	Mifflin–St.	Jeor	Equations	for	REE
A	quick	web	search	on	“resting	energy	expenditure”	reveals	that	many	different	equations	for
estimating	REE	have	been	proposed	over	the	years.	Among	the	most	commonly	used	are	the
Harris–Benedict,	Katch-McArdle,	Livingston–Kohlstadt,	and	Mifflin–St.	Jeor	(MSJ)
equations.	A	review	article	examining	several	such	equations	found	that	the	MSJ	equations
were	most	likely	to	be	accurate	(Frankenfield,	Roth-Yousey,	&	Compher,	2005).	In	this	section
we	use	the	MSJ	equations,	which	were	developed	in	1990	by	Mifflin	et	al.	(1990).

Mifflin	and	St.	Jeor	found	that	the	most	important	factors	determining	an	individual’s	REE
were	weight,	height,	sex,	and	age.	Similar	to	the	sex	difference	in	total	body	water	(see
Chapter	6),	the	sex	difference	in	how	much	energy	is	expended	at	rest	is	largely	due	to	the
different	amounts	of	lean	body	mass	typically	carried	by	men	and	women;	however,	some
researchers	have	found	evidence	that	this	alone	does	not	explain	all	of	the	observed	difference
(Arciero,	Goran,	&	Poehlman,	1993).	We	give	the	MSJ	equations	for	males	and	for	females
below:

Here	REE	is	given	in	calories	burned	per	day,	W	is	weight	in	pounds,	H	is	height	in	inches,
and	A	is	age	in	years.	More	compactly,	if	we	let	1 = male	and	0 = female,	we	can	use	the	single
equation

where	S	is	sex	(Mifflin	et	al.,	1990).

In	developing	our	model	we	treat	height,	age,	and	sex	as	constants	so	that	body	weight	is	the
only	factor	in	REE	that	varies.	Certainly	height	and	sex	will	remain	constant,	but	this	treatment
of	age	will	introduce	some	error	into	our	model.	However,	unless	we	are	projecting	weight
over	a	very	long	time	period,	it	should	not	have	a	dramatic	effect.	In	the	following	we	provide



an	example	of	how	to	use	the	MSJ	formula	to	estimate	REE.

Example	8.3:

Susan	is	a	135-pound	woman	who	is	20	years	old	and	5′4″	tall;	estimate	her	resting
energy	expenditure.

Here	we	simply	plug	all	of	our	variables	into	the	MSJ	equation	for	females,	being	careful
to	convert	5′4″	to	64″:

Susan’s	REE	would	be	about	1367	calories	per	day.

Once	we	have	an	estimate	for	REE	the	next	step	in	determining	total	calorie	needs	is	to	account
for	daily	activities.

8.2.2	Activity	Level
It	is	important	to	realize	that	the	MSJ	equations	estimate	one’s	calorie	needs	at	rest.	However,
most	people	do	not	rest	all	day;	rather,	they	go	to	school	or	work,	run	errands,	play	sports,
work	in	their	gardens,	etc.	To	account	for	the	increased	calorie	needs	brought	about	by	our
daily	activities,	we	multiply	REE	by	a	number	called	the	activity	level.	The	more	active	we
are	in	our	daily	lives,	the	higher	our	activity	level	will	be.	Once	we	multiply	REE	by	this
activity	level,	we	have	a	true	estimate	for	our	daily	calorie	expenditure,	 .	We	denote	the
activity	level	by	a	lowercase	Greek	lambda,	 .	Table	8.1	summarizes	guidelines	for	assigning
the	activity	level	based	on	a	report	by	the	Food	and	Agriculture	Organization	(FAO)	of	the
United	Nations	(FAO,	2001).



TABLE	8.1	Values	Assigned	to	λ0	and	Examples	for	a	Variety	of	Activity	Levels

Activity
Level

Description

Sedentary Desk	job,	little	physical	activity 1.2
Light
activity

Jobs	involving	some	standing	such	as	retail	sales,	some	walking	as	exercise,
and	light	housework

1.375

Moderate
activity

Mason,	construction	worker,	or	sedentary	occupation	with	daily	hour	of
moderate	intensity	exercise

1.55

High
activity

Strenuous	work	or	exercise	for	several	hours	daily,	hard	manual	labor	such
as	nonmechanized	farming,	or	nonsedentary	occupation	with	2 h	of	moderate
to	intense	exercise	daily

1.725

Extreme
activity

Multiple	bouts	of	long	and	intense	exercise	daily	such	as	for	serious	athletes
in	season	or	a	strenuous	occupation	with	additional	leisure	exercise

1.9

For	example,	we	might	assign	a	computer	programmer	who	spends	most	of	her	day	sitting	at	a
desk	an	activity	level	of	1.2,	while	a	construction	worker	who	engages	in	regular	intense
exercise	might	be	assigned	a	level	of	1.725.

Example	8.4:

For	Example	8.3,	estimate	Susan’s	daily	energy	expenditure,	 ,	if	she	works	as	a	bike
courier.

We	already	have	an	estimate	for	Susan’s	REE,	namely,	1367	calories.	Because	of	her	job,
we	assign	Susan	an	activity	level	of	1.725	for	high	activity;	this	results	in	a	total	daily
calorie	expenditure	of	 	calories	per	day.

We	are	now	ready	to	modify	our	constant	calorie	model	by	incorporating	our	new	knowledge
of	how	energy	expenditure	varies	from	person	to	person.	In	particular	we	note	that	the	MSJ
equations	produce	different	estimates	for	REE	for	different	body	weights.	This	adds	a
complication	to	our	model	because	as	our	body	weight	changes,	so	do	our	calorie	needs.

First,	we	update	our	notation	for	calorie	expenditure	to	indicate	that	it	will	no	longer	be
constant	but	will	instead	depend	on	time.	Hence	we	use	 	instead	of	 ,	and	our	new
DDS	for	body	weight	over	time	is

Next	we	find	the	formula	for	 	by	multiplying	the	MSJ	equation	by	the	activity	level,	 .
We	get



It	is	important	to	notice	that	in	the	MSJ	equation	we	have	plugged	in	 	for	weight.	This
is	what	makes	our	new	model	an	improvement	over	the	old—it	updates	our	daily	calorie
expenditure	as	our	weight	changes.	This	change	is	in	agreement	with	what	we	observe	in
weight	loss	studies:	if	we	lose	weight,	our	calorie	needs	decrease,	and	it	subsequently
becomes	a	harder	to	lose	more	weight.

Substituting	the	new	expression	for	 	into	the	DDS,	we	get	the	final	version	of	the
variable	calorie	expenditure	model:

At	first	glance	this	new	model	may	appear	to	be	very	complicated;	however,	it	is	just	another
example	of	an	affine	model,	albeit	with	more	complicated	constants.	We	demonstrate	this	fact
when	we	perform	an	equilibrium	analysis	on	the	model	in	the	next	section.	For	now	we	just
need	to	be	careful	when	entering	the	formula	into	Excel.

The	daily	calorie	intake	 ,	height	(H),	age	(A),	sex	(S),	and	activity	level	 	are	all	user-
supplied	parameters.	To	implement	the	model	in	Excel,	we	set	aside	space	at	the	top	of	our
worksheet	for	the	user	to	input	the	required	parameters,	and	to	make	the	spreadsheet	more	user
friendly,	we	make	use	of	Excel’s	Data	Validation	feature	for	sex	and	activity	level	(see	Section
6.1).	Figure	8.5	shows	a	screenshot	of	our	setup	before	the	equations	are	entered.



FIGURE	8.5	Excel	setup	for	variable	calorie	expenditure	model.

Typing	the	DDS	in	correctly	will	take	some	care	since	there	are	so	many	inputs.	Figure	8.6
shows	the	final	product	with	the	equation	for	body	weight	displayed.

FIGURE	8.6	Excel	setup	with	body	weight	formula.

Note	that	we	have	referred	to	all	parameters	with	absolute	addressing	and	that	we	have	used
the	single	MSJ	equation	with	an	IF	statement	for	sex.	We	try	out	our	new	model	with	an
example.



Example	8.5:

Suppose	Karen	is	a	25-year-old	computer	programmer	who	currently	weighs	165	pounds
and	is	5′8″	tall.	To	help	offset	the	sedentary	nature	of	her	job,	she	rides	her	bike	to	work
and	walks	a	few	blocks	at	lunch	every	day.	Predict	Karen’s	weight	1	month	from	now	and
her	long-term	weight	if	she	eats	approximately	1900 kcal	per	day.

Though	it	is	a	matter	of	judgment,	we	assign	Karen	an	activity	level	of	 	for	light
activity.	The	rest	of	the	problem	is	a	matter	of	entering	the	parameters	in	the	correct	units
and	dragging	our	equations	down	to	the	appropriate	time.

Our	spreadsheet	predicts	Karen’s	weight	after	31	days	to	be	about	163.1	pounds.	Though
the	model	predicts	it	will	take	several	years,	it	appears	Karen’s	long-term	weight	will
stabilize	at	about	129.8	pounds.	Figure	8.7	shows	the	results	with	unnecessary	rows
hidden.	Intuitively	this	is	already	an	improvement	over	the	constant	expenditure	model.
We	have	Karen’s	weight	stabilizing	at	some	reasonable	value	rather	than	tending	to	zero
or	growing	to	infinity.



FIGURE	8.7	Excel	results	for	Example	8.5.

As	the	last	example	shows,	the	variable	calorie	expenditure	model	predicts	that	if	we	consume
the	same	number	of	calories	every	day,	eventually	our	calorie	needs	change	to	exactly	balance
the	intake.	We	examine	this	feature	of	the	model	further	by	examining	its	equilibrium	value.

8.2.3	Equilibrium	Analysis
Finding	the	equilibrium	value	for	our	model	is	no	different	than	for	previous	models;	however,
we	will	benefit	from	simplifying	the	model	with	some	algebra	first.	Our	first	step	is	to
reorganize	the	DDS	to	get



This	allows	us	to	recognize	the	model	as	a	complicated-looking	affine	DDS,	

,	where	 	and

From	our	previous	work	with	affine	systems,	we	know	that	the	equilibrium	value	is	given	by

After	some	simplifying	we	get

Writing	coefficients	as	decimals	gives

As	a	quick	check	that	our	algebra	is	correct,	in	the	next	example	we	confirm	the	Excel	result
for	Karen’s	long-term	weight	from	Example	8.5.

Example	8.6:

Use	the	formula	for	 	to	calculate	Karen’s	equilibrium	weight	from	our	last	example.

This	is	just	a	matter	of	plugging	in	all	of	the	parameters	for	Karen	into	the	equation	for	

.	We	get	 .

The	resulting	129.73 pounds	is	the	same	long-term	weight	(within	rounding	error)	we
predicted	using	Excel.

From	our	previous	work	on	affine	systems	in	the	context	of	populations,	we	know	that	the
equilibrium	for	weight	will	be	stable.	Thus	we	can	view	 	as	our	long-term	weight	for	any
reasonable	constant	daily	intake	of	 	calories.	By	examining	the	formula	for	 ,	we	make	two
general	observations	that	should	agree	with	our	intuition	about	how	body	weight	works:

1.	 If	we	increase	our	daily	intake,	 ,	our	long-term	weight	will	increase.

2.	 If	we	become	more	active,	that	is,	if	 	increases,	our	long-term	weight	will	decrease.



The	equilibrium	value	for	our	model	does	more	than	just	predict	long-term	weight.	It	actually
provides	us	with	a	reasonable	way	to	set	our	daily	caloric	intake,	 ,	for	a	long-term	weight
goal.	We	illustrate	how	to	do	so	in	the	next	example.

Example	8.7:

Allen	is	a	UPS	delivery	driver	who	is	35	years	old	and	6	feet	tall.	His	current	weight	is
250 pounds,	but	he	would	eventually	like	to	weigh	200 pounds.	Find	Allen’s	target	daily
calorie	consumption	in	order	for	him	to	reach	his	goal.

In	terms	of	the	equilibrium	for	our	model,	we	need	to	arrange	for	 	by	finding	the
required	 .	We	have	all	other	needed	parameters	except	for	Allen’s	activity	level,	 .
Driving	a	delivery	truck	for	UPS	is	a	physically	demanding	job,	so	we	assign	Allen	a	high
activity	level	of	 .	Now	we	are	ready	to	plug	all	known	parameters	into	the
equation	for	 :

As	we	can	see	the	only	remaining	unknown	is	 ,	so	we	can	solve	for	it.	We	get

Thus	 .	Allen	should	consume	about	3244	calories	per	day	to	eventually	get	his
weight	down	to	200	pounds.

We	note	that	the	equilibrium	value	 	does	not	depend	on	the	initial	body	weight:	this	model
would	predict	the	same	long-term	weight	for	Karen	if	she	started	at	100	or	300	pounds.
Similarly,	the	model	predicts	the	same	long-term	weight	for	a	given	diet	and	activity	level	for
anyone	who	has	the	same	height,	age,	and	sex,	regardless	of	body	weight.	This	turns	out	to	be
at	odds	with	studies	of	long-term	weight	(Hall	et	al.,	2011).	In	fact	a	person’s	initial	weight
does	influence	their	long-term	weight.	Not	only	that,	but	body	composition	is	also	an	important
factor:	people	who	weigh	the	same	can	have	very	different	calorie	needs	depending	on	how
much	of	that	weight	is	fat	versus	muscle.	Later	in	the	chapter	we	develop	a	more	sophisticated
model	that	takes	body	composition	into	account.

Finally,	we	note	that	in	our	discussion	of	long-term	weight	we	have	continued	to	treat	age	as	a
constant.	The	longer	the	time	period	in	question,	the	more	error	this	assumption	will	introduce
into	the	model.	Since	we	generally	require	fewer	calories	as	we	age,	the	long-term	weight
values	projected	here	will	tend	to	be	underestimates.



8.2.4	Section	Exercises

1.	 Implement	the	variable	calorie	expenditure	model	with	Excel	using	your	own	parameters
for	initial	weight,	height,	age,	activity	level,	and	sex,	and	select	a	daily	calorie	intake	that
would	result	in	weight	gain.

a.	 Note	what	the	model	predicts	for	your	body	weight	over	1	week,	1	month,	6	months,	1
year,	and	5	years.

b.	 Use	Excel	to	determine	your	long-term	stable	weight.

2.	 Implement	the	variable	calorie	expenditure	model	with	Excel	using	your	own	parameters
for	initial	weight,	height,	age,	activity	level,	and	sex,	and	select	a	daily	calorie	intake	that
would	result	in	weight	loss.

a.	 Note	what	the	model	predicts	for	your	body	weight	over	1	week,	1	month,	6	months,	1
year,	and	5	years.

b.	 Use	Excel	to	determine	your	long-term	stable	weight.

3.	 For	the	parameters	you	used	in	Exercise	,	determine	the	long-term	weight	by	finding	the
equilibrium	value	algebraically.

4.	 For	the	parameters	you	used	in	Exercise	,	determine	the	long-term	weight	by	finding	the
equilibrium	value	algebraically.

5.	 For	parameters	of	your	choosing,	set	a	long-term	goal	weight.

a.	 Determine	the	daily	calorie	intake	required	to	reach	your	long-term	goal	weight.

b.	 Confirm	your	result	in	part	(a)	with	Excel.

6.	 According	to	the	Mifflin–St.	Jeor	equation,	determine	which	of	the	following	changes
would	result	in	the	largest	change	in	resting	energy	expenditure:	an	additional	3	inches	in
height,	an	additional	10	pounds	of	weight,	or	being	10	years	younger.	Explain	how	you
arrived	at	your	conclusion.

7.	 Using	your	own	parameter	values	and	choice	of	daily	intake,	compare	the	long-term
predictions	of	the	constant	calorie	and	variable	calorie	expenditure	models.	Explain	in	a
complete	sentence	or	two	the	reasons	for	any	difference.

8.	 Extension:	Our	variable	calorie	expenditure	model	was	based	on	the	Mifflin–St.	Jeor
equations	for	resting	energy	expenditure.	Construct	a	variable	calorie	expenditure	model
based	on	the	Harris–Benedict	equations	for	resting	energy	expenditure	instead.

a.	 Construct	an	Excel	spreadsheet	for	the	model.

b.	 Compare	the	new	model’s	long-term	projection	for	your	own	weight	with	the	MSJ-
based	model.	Which	seems	more	reasonable?

c.	 Do	a	general	equilibrium	analysis	for	males	or	females.

9.	 Extension:	Our	variable	calorie	expenditure	model	was	based	on	the	Mifflin–St.	Jeor



equations	for	resting	energy	expenditure.	Construct	a	variable	calorie	expenditure	model
based	on	the	Livingston–Kohlstadt	equations	for	resting	energy	expenditure	instead.

a.	 Construct	an	Excel	spreadsheet	for	the	model.

b.	 Compare	the	new	model’s	long-term	projection	for	your	own	weight	with	the	MSJ-
based	model.	Which	seems	more	reasonable?

c.	 Do	a	general	equilibrium	analysis	for	males	or	females	and	compare	the	result	to	MSJ.

10.	 Extension:	As	we	age	we	typically	burn	fewer	calories,	largely	due	to	a	decrease	in	lean
muscle	mass.	This	effect	of	aging	is	incorporated	in	the	Mifflin–St.	Jeor	equations,	but	we
elected	to	treat	age	as	a	constant	to	keep	the	model	as	simple	as	possible.	In	this	problem
we	include	age	effects	in	the	model.

a.	 Modify	the	variable	calorie	expenditure	model	to	include	age	as	a	variable.	It	may	help
to	include	a	separate	column	for	tracking	changes	in	age.

b.	 Use	the	new	model	and	your	parameters	from	Exercise	to	project	your	body	weight
over	1	week,	1	month,	6	months,	1	year,	and	5	years.

c.	 Has	the	prediction	changed	significantly	from	the	original?

d.	 What	effect	does	varying	age	have	on	the	equilibrium	value?

11.	 Most	college	students	have	heard	about	the	“Freshman	15,”	a	term	first	introduced	in	an
article	in	Seventeen	magazine	in	1989	for	the	purported	gaining	of	15	pounds	experienced
by	students	during	their	first	year	of	college	(Karasu,	2013).	Many	studies	have	found	that
the	Freshman	15	is	a	myth	(Karasu,	2013).	In	fact	many	college	students	actually	lose
weight	during	their	first	year,	and	those	who	do	gain	weight	typically	gain	somewhere
around	3–5	pounds,	certainly	nowhere	near	the	assumed	15	(Karasu,	2013).	Moreover,	the
weinght	that	is	gained	could	simply	be	due	to	natural	growth	and	development	into
adulthood	(Posterli,	n.d.).	Though	many	factors	such	as	cafeteria-style	eating,	stress,	and
irregular	sleep	habits	conspire	to	make	it	difficult	to	eat	a	healthy	diet	when	starting
college,	the	change	most	associated	with	weight	gain	during	this	time	is	an	excess	of
alcohol	consumption	(Zagorsky	&	Smith,	2011).

a.	 Use	the	variable	calorie	expenditure	model	to	estimate	the	required	daily	calorie	intake
in	order	for	you	to	gain	15	pounds	in	9	months.

b.	 Use	the	variable	calorie	expenditure	model	to	estimate	the	required	daily	calorie	intake
in	order	for	you	to	gain	3	pounds	in	9	months.

c.	 Use	the	variable	calorie	expenditure	model	to	estimate	the	amount	of	weight	you	would
gain	in	9	months	if	you	increased	your	alcohol	consumption	by	2	drinks	per	day	and
changed	nothing	else.

8.3	HEALTH	METRICS
So	far	the	models	we	have	created	have	focused	exclusively	on	predicting	body	weight	over



time.	While	this	is	certainly	important,	body	weight	is	generally	not	the	best	metric	for	gauging
an	individual’s	health	or	disease	risk.	Other	body	measures,	such	as	body	mass	index	(BMI)
or	waist-to-height	ratio	(WHR),	provide	physicians	with	much	more	useful	information	than
body	weight	alone.	We	discuss	these	measures	in	the	following	sections.

8.3.1	BMI
While	weight	is	an	important	health	metric,	it	should	not	be	our	sole	focus.	We	know	intuitively
that	a	6′6″	male	weighing	200 pounds	is	likely	at	a	healthier	weight	than	a	5′4″	male	weighing
the	same.	One	attempt	to	capture	this	intuitive	idea	is	a	measurement	that	takes	into	account
both	weight	and	height	called	the	BMI.	This	is	a	very	popular	metric	used	by	health
professionals	in	part	because	it	is	very	easy	to	determine	the	necessary	parameters	in	an	office
setting	and	it	is	straightforward	to	calculate.	The	formula	for	calculating	BMI	is

where	W	is	a	person’s	weight	in	pounds	and	H	is	a	person’s	height	in	inches.	In	our	next
example	we	compare	BMIs	for	two	men	of	the	same	weight	who	have	different	heights.

Example	8.8:

John	is	6′6″	tall	and	Steve	is	5′4″	tall.	Both	weigh	200	pounds.	Calculate	and	compare
their	BMIs.

John	is	78	inches	tall,	so	his	BMI	is	 .	Steve	is	64	inches	tall,	so	his

BMI	is	 .	Steve’s	BMI	is	much	higher	than	John’s	because	of	his
shorter	stature.

The	numbers	we	just	calculated	do	not	mean	very	much	without	some	context	about	what	is
considered	a	healthy	BMI	and	what	is	not.	According	to	the	National	Institutes	of	Health
(NIH),	the	BMI	guidelines	presented	in	Table	8.2	provide	ranges	appropriate	for	use	in	adults
of	both	sexes	(Obesity	Education	Initiative,	1998).

TABLE	8.2	NIH	Ranges	for	Interpreting	BMI	Values

BMI Health	Status	Category
Below	18.5 Underweight
Between	18.5	and	24.9 Normal
Between	25.0	and	29.9 Overweight
Above	29.9 Obese



Clinicians	often	use	BMI	as	an	important	indicator	of	disease	risk.	Individuals	whose	BMI
falls	in	the	overweight	or	obese	categories	are	at	increased	risk	for	a	variety	of	diseases
including	hypertension,	diabetes,	and	cardiovascular	disease	(Obesity	Education	Initiative,
1998).	According	to	Table	8.2,	John	from	Example	8.8	has	a	BMI	in	the	normal	range,	while
Steve	is	obese.	This	provides	us	with	an	important	distinction	that	considering	weight	alone
would	not.

Though	it	has	its	limitations,	BMI	has	the	advantage	over	many	other	measurements	in	that	it	is
very	easy	to	calculate	using	easily	obtainable	data.	In	the	next	section	we	look	at	another	such
measurement.

8.3.2	WHR
One	of	the	limitations	of	BMI	as	a	health	indicator	is	that	it	does	not	distinguish	between
healthy,	desirable	body	weight	like	that	due	to	lean	muscle	and	unhealthy,	undesirable	body
weight	like	that	due	to	excess	fat.	Moreover,	some	kinds	of	fat,	particularly	abdominal	fat,	are
known	to	be	worse	for	our	health	than	others	(CDC,	2011).

The	WHR	is	a	simple	metric	that	makes	a	distinction	between	healthy	kinds	of	weight	and
unhealthy	kinds	of	weight	by	providing	a	rough	measure	of	abdominal	fatness.	Current	research
indicates	that	the	WHR	is	actually	a	better	predictor	of	disease	risk	than	BMI	(Ashwell,	Gunn,
&	Gibson,	2012).	Furthermore,	WHR	is	appropriate	to	use	across	different	ethnicities	and	ages
(Ashwell	&	Hsieh,	2005).

The	ratio	is	easy	to	compute.	All	we	need	is	a	person’s	height	and	waist	circumference.	Then
we	calculate

The	units	we	use	do	not	matter	as	long	as	the	same	unit	is	used	for	each	measurement.	Waist
circumference	should	be	measured	with	a	measuring	tape	wrapped	around	the	bare	waist	at	the
navel.	The	tape	should	be	snug	but	should	not	compress	the	belly.

The	next	example	shows	the	basic	calculation.

Example	8.9:

Stella	is	5′2″	tall	and	has	a	30.5″	waist.	Find	Stella’s	WHR.

All	we	need	to	do	here	is	convert	Stella’s	height	to	inches	and	then	plug	our	two	values

into	the	formula.	We	get	 .

Like	the	BMI	the	calculation	for	WHR	needs	some	context	to	make	it	meaningful.	Table	8.3	is



similar	to	Table	8.2	and	gives	ranges	for	interpreting	the	WHR	for	both	men	and	women	based
on	the	work	of	Ashwell	and	Hsieh	(2005).

TABLE	8.3	Ranges	for	Interpreting	WHR	Values

Waist	to	Height	Ratio Health	Status	Category
Below	0.40 Underweight
Between	0.40	and	0.50 Healthy
Between	0.50	and	0.60 Overweight
Above	0.60 Obese

We	see	that	based	on	Table	8.3,	Stella	from	our	previous	example	would	be	classified	as
healthy,	though	she	is	on	the	border	of	being	overweight.

Assuming	that	height	remains	constant,	our	WHR	only	changes	when	our	waist	circumference
changes.	If	we	knew	how	changes	in	body	weight	are	related	to	changes	in	waist	size,	we
could	use	our	body	weight	models	to	predict	WHR.	One	study	found	that	in	Japanese	men,
waist	size	changed	by	1	inch	for	every	4.87	pound	change	in	body	weight.	In	Japanese	women,
the	association	was	1	inch	for	every	5.94	pound	change	in	body	weight	(Miyatake	et	al.,	2007).
While	this	is	only	one	study	and	while	it	is	unclear	if	the	results	extend	to	non-Japanese
groups,	these	figures	might	allow	us	to	use	our	body	weight	projections	to	make	predictions
about	the	more	important	WHR.	The	reader	is	invited	to	do	so	in	the	exercises.

8.3.3	Section	Exercises

1.	 Find	and	assess	the	BMI	for	a	5′3″	person	who	weighs	140	pounds.

2.	 Find	and	assess	the	WHR	for	a	5′10″	person	who	has	a	40″	waist.

3.	 How	tall	would	a	250-pound	person	have	to	be	in	order	to	have	a	healthy	BMI?

4.	 How	tall	would	a	person	with	a	45″	waist	have	to	be	in	order	to	have	a	healthy	WHR?

5.	 Use	your	own	height	and	the	BMI	guidelines	in	Table	8.2	to	determine	a	healthy	weight
range	for	yourself.

6.	 Extension:	Have	Excel	model	BMI	over	time	by	including	a	new	column	for	BMI	in	the
variable	calorie	expenditure	model	for	body	weight.	Include	a	graph	of	BMI	over	time	that
includes	horizontal	lines	that	represent	the	BMI	levels	for	underweight,	normal,
overweight,	and	obese.

7.	 For	parameter	values	of	your	choosing,	find	the	projected	long-term	BMI	by	using	the
equilibrium	analysis	from	Section	8.2.3.

8.	 Use	Excel,	your	own	height,	and	the	WHR	guidelines	in	Table	8.3	to	determine	a	healthy
waist	circumference	range	for	yourself.

9.	 Extension:	Assume	that	the	results	of	the	study	referenced	at	the	end	of	this	section	hold



across	all	ethnicities.	That	is,	assume	that	for	men,	waist	size	changes	by	1″	for	every	4.87
pound	change	in	body	weight.	For	women,	assume	that	waist	size	changes	by	1″	for	every
5.94	pound	change	in	body	weight	(Miyatake	et	al.,	2007).	For	the	variable	calorie
expenditure	model,	include	a	new	parameter	for	waist	circumference	in	inches.

a.	 Have	the	worksheet	compute	an	initial	value	for	waist-to-height	ratio.

b.	 Have	the	worksheet	model	WHR	over	time	by	including	new	columns	for	waist
circumference	and	WHR	next	to	body	weight	in	the	model.

8.4	BODY	COMPOSITION
The	concept	of	BMI	is	an	improvement	overly	merely	focusing	on	weight	because	it	provides
an	indication	of	body	fatness,	which	is	more	correlated	with	disease	risk	than	weight	alone.
This	is	indeed	a	better	way	of	determining	healthy	weight,	but	it	still	lacks	precision.	The
formula	for	BMI	makes	no	distinction	between	healthy	weight	like	muscle	and	unhealthy
weight	like	fat.	A	bodybuilder,	for	example,	might	score	poorly	on	a	BMI	chart	because	she
may	weigh	a	lot	for	her	height.	But	because	she	is	very	lean,	she	may	still	be	very	healthy.	Or
we	can	look	at	it	this	way:	a	very	fit	180-pound,	6′	tall	male	will	have	the	same	BMI	as	a	very
out	of	shape	180-pound,	6′	tall	male,	though	the	former	is	clearly	healthier	in	general	than	the
latter.	The	fit	person	will	tend	to	have	much	less	fat	than	one	who	is	out	of	shape.

A	better	determination	of	healthfulness	is	WHR	because	it	will	distinguish	between	a	muscular,
fit	person	and	a	fat,	sedentary	person	who	are	the	same	weight	and	height	due	to	differences	in
body	shape.	The	muscular,	fit	person	will	have	a	much	smaller	waist	and	therefore	score
healthier	on	the	WHR	scale.	Still,	though,	WHR	is	an	indirect	measure	of	body	fat,	and	we	can
potentially	improve	our	model	for	body	weight	by	explicitly	distinguishing	between	lean	body
mass	and	fat.

While	the	estimates	for	REE	given	by	the	MSJ	equation	and	others	are	useful	and	accurate	for
a	large	segment	of	the	population,	research	indicates	that	most	such	equations	are	missing	an
important	point:	for	a	given	body	weight,	individual	calorie	needs	can	be	very	different	based
on	body	composition,	that	is,	the	percentage	of	body	weight	that	is	fat	(F)	or	lean	body	mass
(L)	(Nelson,	Weinsier,	Long,	&	Schutz,	1992).	By	lean	body	mass	we	mean	anything	that	is	not
fat;	this	includes	muscle	but	also	bones	and	other	body	tissues.	Though	both	fat	and	lean	body
mass	burn	calories,	lean	body	mass	burns	many	more	calories	per	pound	than	fat;	thus	lean,
muscular	people	have	higher	calorie	needs	than	people	with	high	body	fat	even	if	they	weigh
the	same.	For	example,	a	woman	who	weighs	130	pounds	and	carries	39	pounds	of	fat	will
burn	fewer	calories	per	day	than	a	woman	who	weighs	130	pounds	but	carries	only	13	pounds
of	fat.	Note	that	both	women	would	have	the	same	BMI	and	the	MSJ	equation	would	suggest
the	same	calorie	needs	for	both	(assuming	equal	ages	and	heights).

We	begin	by	letting	 	and	 	be	pounds	of	fat	and	lean	body	mass,	respectively,	at	time,	t.
Since	we	define	lean	body	mass	to	be	anything	other	than	fat,	we	can	write	 ,
or	equivalently,	 .



Introducing	body	composition	into	our	model	complicates	it	in	four	ways:

1.	 Fat	and	lean	burn	different	amounts	of	calories	per	pound.	We	need	to	know	both	“burn
rates.”

2.	 A	normal	scale	measures	only	weight,	not	body	fat.	We	need	a	way	to	estimate	an
individual’s	body	fat.

3.	 When	body	weight	is	gained	or	lost,	some	of	the	weight	change	is	fat,	and	some	of	it	is
lean.	We	need	to	adjust	the	model	so	that	whenever	there	is	a	change	in	weight,	some	of	it
comes	from	a	change	in	fat	mass	and	some	from	a	change	in	lean.

4.	 At	the	beginning	of	this	chapter	we	assumed	that	the	energy	density	of	body	weight	was
3500	calories	per	pound.	This	is	a	reasonable	average	value;	however,	fat	and	lean
actually	have	different	energy	densities,	and	in	fact	it	takes	more	calories	to	add/lose	a
pound	of	fat	than	it	does	a	pound	of	lean.	We	need	to	know	how	many	calories	are	in	a
pound	of	fat	and	how	many	are	in	a	pound	of	lean.

We	build	our	new	model	step-by-step	by	resolving	each	of	these	four	issues	in	turn.

8.4.1	Calorie	Burn	Rates	for	Lean	and	Fat
We	have	seen	ways	of	estimating	REE,	the	number	of	calories	a	body	burns	at	rest,	based	on
considerations	like	height	and	weight.	Now	we	take	a	different	approach	by	estimating	REE
based	on	how	many	calories	are	burned	by	a	pound	of	lean	body	mass	and	how	many	are
burned	by	a	pound	of	fat.

This	question	has	been	studied	by	many	scientists,	and	we	use	the	work	of	Nelson	here.	In	his
study	Nelson	determined	that	fat	mass	and	lean	mass	were	the	most	important	determinants	of
REE,	and	he	developed	an	estimate	for	REE	based	solely	on	the	amounts	of	fat	and	lean	an
individual	carries	(Nelson,	Weinsier,	Long,	&	Schutz,	1992).	His	equation	is	given	by

where	F	and	L	are	in	pounds	and	REE	is	in	calories	per	day	We	can	interpret	Nelson’s
equation	to	mean	that	on	average	a	pound	of	fat	burns	1.832	calories	per	day,	while	a	pound	of
lean	burns	11.708	calories	per	day.	In	the	next	example	we	show	how	to	use	Nelson’s	formula,
and	we	note	how	much	of	a	difference	body	composition	can	make	in	REE.



Example	8.10:

Kyle	and	Eric	both	weigh	156	pounds,	but	Kyle	has	15%	body	fat	and	Eric	has	30%	body
fat.	Estimate	the	REE	for	both	Kyle	and	Eric.

We	need	to	know	how	many	pounds	of	lean	and	fat	each	of	the	men	have.	Kyle	is	15%	fat,
so	he	has	 	pounds	of	body	fat	and	 	pounds	of	lean.
Similar	calculations	show	Eric	has	46.8	pounds	of	fat	and	109.2	pounds	of	lean.	To
estimate	their	REEs,	we	plug	their	values	for	lean	and	fat	into	Nelson’s	equation.	For
Kyle	we	get	 	calories	per	day.	For	Eric	we
get	 	calories	per	day.	By	virtue	of	the	fact
that	he	has	more	lean	body	mass	and	less	fat,	Kyle	requires	230	calories	more	than	Eric	at
rest.

Nelson’s	equation	for	estimating	REE	is	a	great	start	for	our	new	model	as	it	is	a	very	simple
equation	to	use.	But	it	brings	us	to	difficulty	number	two:	how	do	we	know	an	individual’s
body	fat	percentage?

8.4.2	Determining	Body	Fat	Percentage
There	are	a	variety	of	methods	that	can	be	used	to	estimate	body	fat	percentage,	some	of	which
can	be	done	at	home.	Most	methods	that	can	be	done	easily	at	home	will	suffer	from	some
inaccuracy,	but	as	long	as	the	same	method	is	used	consistently,	they	can	all	be	useful	as	a	way
of	tracking	changes	in	body	fat	%,	and	that	is	in	many	ways	more	important	than	a	perfectly
accurate	number.

By	far	the	easiest	way	to	measure	body	fat	is	with	a	body	fat	scale.	These	scales	use
bioelectrical	impedance	to	measure	body	composition;	some	not	only	report	body	fat	%,	but
they	also	measure	an	individual’s	body	water,	muscle,	and	even	bone	mass.	The	scale	sends	a
small	electrical	current	through	the	body;	then	based	on	how	much	resistance	the	current
encounters,	the	composition	of	the	body	can	be	calculated.	When	using	a	body	fat	scale,	it	is
important	to	always	weigh	in	at	the	same	time	of	day,	preferably	not	directly	after	exercise	or	a
big	meal,	in	order	to	get	results	that	are	as	accurate	as	possible.	Body	fat	scales	are	relatively
inexpensive	and	can	be	purchased	for	approximately	$40–$50.

For	those	without	a	body	fat	scale,	a	very	inexpensive	and	low-tech	do-it-yourself	method	is
available.	All	that	is	required	is	a	measuring	tape.	The	idea	is	to	use	the	measuring	tape	to	take
a	variety	of	body	measurements	and	then	use	a	formula	based	on	those	dimensions	to	estimate
body	fat.	Different	formulas	require	that	different	measurements	be	taken.

One	such	method	is	used	by	the	military	and	another	by	author	and	researcher	Covert	Bailey.
Neither	method	is	100%	accurate,	but	for	a	large	percentage	of	people,	they	will	be	fairly
close.	It	is	probably	best	to	use	both	methods	and	think	of	the	results	as	a	range	where	you	can
be	pretty	sure	your	true	percentage	lies.



Equations	developed	by	US	Navy	researchers	for	assessing	body	fat	in	service	men	and
women	have	been	found	to	be	reasonably	accurate	overall	and	the	best	among	many	existing
equations	for	estimating	body	fat	in	young	women	(Friedl	et	al.,	2001).	The	Navy’s	equations
are	slightly	different	for	men	and	for	women.	Men	need	to	measure	their	height	(H),	waist	at
the	navel	(Wa),	and	neck	(N).	Women	also	need	height	and	neck	circumference,	but	they
measure	the	waist	at	its	narrowest	point,	and	they	need	an	additional	measurement:	the	hips	at
their	fullest	point	(Hp).	All	measurements	should	be	taken	in	inches.	The	Navy’s	equations	are
given	by

Once	measurements	have	been	taken,	the	individual	simply	plugs	them	into	the	correct	formula
based	on	sex.	Note	that	for	this	formula	it	will	be	necessary	to	use	Excel	or	a	calculator
capable	of	computing	logarithms.	The	“log”	function	is	the	base-10	logarithm.

As	an	alternative	to	using	the	Navy	equations,	we	can	use	those	developed	by	Covert	Bailey,
health	researcher	and	author	of	the	Fit	or	Fat	series	of	books.	Bailey	developed	four	different
formulas	corresponding	to	different	sexes	and	ages,	and	his	formulas	all	use	a	different	set	of
measurements	than	the	Navy’s	(Bailey	C.,	2000).	Women	take	measurements	of	their	hips	(Hp),
thigh	(T),	and	calf	(C)	at	their	fullest	points	and	their	wrist	(Wr)	just	above	the	wrist	bone.	All
measurements	should	be	taken	in	inches.	Once	all	measurements	are	taken,	women	select	the
formula	that	corresponds	to	their	age	category	and	plug	in	their	measurements.	Bailey’s
equations	for	women	are	given	by

Men	take	measurements	of	their	hips	(Hp)	at	their	fullest	point,	waist	at	the	navel	(Wa),
forearm	(Fo),	and	wrist	(Wr)	just	above	the	bone.	Bailey’s	equations	for	men	are	given	by

In	the	next	example	we	compare	the	two	methods	for	an	over-30	male.



Example	8.11:

The	author	is	a	44-year-old	male	who	is	6′	tall	and	weighs	180	pounds.	His	measurements
are	36″	at	the	waist,	15.75″	at	the	neck,	41.25″	at	the	hips,	12″	at	the	forearm,	and	7″	at
the	wrist.	Estimate	his	body	fat	percentage	using	the	Navy’s	equations	and	Bailey’s
equations.

For	the	Navy’s	equations	we	calculate

For	Bailey’s	equations	we	calculate

The	two	methods	are	fairly	close	in	their	estimates.

Equations	like	these	that	use	body	measurements	are	pretty	accurate	for	a	large	segment	of	the
population;	however,	their	real	benefit	is	in	tracking	progress.	Whether	or	not	the	body	fat
percentage	for	an	individual	is	100%	accurate	generally	matters	less	than	the	ability	to
measure	improvement,	which	these	equations	do	very	well.

If	it	is	important	to	have	a	truly	accurate	measurement	of	body	fat	%,	then	underwater	weighing
is	often	done.	In	this	method	an	individual	is	weighed	while	fully	submerged	in	a	tank	of	water.
Based	on	the	different	buoyancies	of	fat,	bone,	muscle,	etc.,	an	accurate	body	fat	percentage
can	be	calculated	based	on	the	weight.	Yet	another	common	method	is	to	use	skinfold
measurements	using	calipers;	this	method	can	yield	accurate	results,	but	the	person	using	the
calipers	must	have	proper	training	to	avoid	measurement	errors.

As	a	final	set	of	body	fat	equations,	we	use	those	developed	by	Jackson	(Jackson	et	al.,	2002)
and	used	by	Hall	in	his	development	of	a	model	for	body	weight	(Hall	et	al.,	2011).	The
strength	of	Jackson’s	equations	is	that	they	require	the	least	amount	of	information	to	calculate
an	estimate	for	body	fat	percentage.	In	fact	Jackson’s	equations	require	only	age	(A),	weight
(W),	and	height	(H),	all	of	which	are	likely	to	be	known	to	the	user,	whereas	a	measurement
like	wrist	circumference	will	take	effort	to	find.	The	function	 	is	the	natural	logarithm	and
is	one	of	the	built-in	functions	included	with	Excel.	Jackson’s	equations	are	given	by



Recognizing	the	expression	that	appears	inside	the	natural	logarithm	function	allows	us	to
write	Jackson’s	equations	as

In	the	next	example	we	show	how	to	use	Jackson’s	equations	to	estimate	body	fat.

Example	8.12:

Estimate	the	body	fat	percentage	for	the	author	using	Jackson’s	equations.

The	author’s	BMI	is	24.4.	Thus	according	to	Jackson’s	equation,	we	have

This	gives	us	a	body	fat	estimate	of	21.4%	for	the	author.	So	far	we	have	three	different
estimates	for	the	author’s	body	fat	percentage:	17.2%,	19%,	and	21.4%.	As	a	fourth	point
of	comparison,	the	author’s	body	fat	scale	reports	a	value	of	14.4%.	This	is	a	fairly	wide
spread	of	results	and	serves	to	emphasize	the	point	that	body	fat	estimates	are	not
necessarily	useful	for	producing	really	accurate	results,	but	they	can	be	very	useful	in
tracking	progress.

The	Jackson	equations	give	us	a	starting	point	for	body	fat	%,	but	note	that	we	can	make	our
model	more	personally	applicable	and	more	accurate	if	we	measure	our	own	body	fat
percentage	using	a	body	fat	scale	or	measuring	tape	and	use	that	figure	in	place	of	the	value
given	by	Jackson.

Like	BMI	and	WHR,	measurements	of	body	fat	percentage	are	not	particularly	meaningful
without	a	sense	of	what	levels	are	considered	healthy.	The	American	Council	on	Exercise
guidelines	for	body	fat	percentage	levels	in	women	and	men	are	presented	in	Table	8.4.



TABLE	8.4	American	Council	on	Exercise	Body	Fat	Percentage	Guidelines
Source:	American	Council	on	Exercise	(2014).	Reproduced	with	permission	from	the	American	Council	on	Exercise.

Women	(%) Men	(%)
Essential	fat 10–13 2–5
Athletes 14–20 6–13
Fitness 21–24 14–17
Acceptable 25–31 18–24
Obesity 32	or	over 25	or	over

The	table	reinforces	the	fact	that	individuals	can	carry	a	wide	range	of	body	fat	and	still	be	fit
and	healthy.	It	also	shows	that	less	is	not	necessarily	better	when	it	comes	to	body	fat:	it	can	be
dangerous	to	try	to	bring	body	fat	levels	down	below	the	essential	level	our	bodies	need	to
function	properly.	According	to	Table	8.4,	the	author	falls	somewhere	between	fitness	and
acceptable	in	terms	of	body	fat.

8.4.3	How	Weight	Changes	Affect	Body	Composition
Our	models	of	body	weight	up	to	now	have	treated	all	weight	equally	as	though	“a	pound	is	a
pound.”	The	reality,	though,	is	more	complicated.	When	someone	gains	or	loses	weight,	some
of	that	weight	will	be	fat,	but	some	of	it	will	be	lean.	Even	more	interesting	in	recent	work	by
Forbes	and	Hall	is	that	the	proportions	of	fat	and	lean	gained	or	lost	depend	on	how	much	body
fat	the	individual	has.	In	general,	the	more	body	fat	one	has,	the	higher	proportion	of	any
weight	change	will	be	fat.	If	an	obese,	sedentary	person	loses	a	pound	of	body	weight,	almost
all	of	that	weight	will	be	fat;	however,	if	an	Olympic	athlete	loses	a	pound	of	body	weight,
much	of	that	pound	will	actually	be	lean	(Forbes,	2000;	Hall	K.	D.,	2007).

For	our	modeling	purposes,	the	big	question	is	how	to	incorporate	the	effect	of	body
composition	on	the	composition	of	weight	changes.	The	key	in	modeling	this	body	composition
effect	is	to	examine	how	the	body	“partitions”	any	calorie	deficit	or	surplus.	In	other	words,
when	we	take	in	fewer	calories	than	we	burn,	how	does	the	body	compensate	for	the	energy
deficit?	Broadly	speaking,	the	body	compensates	by	burning	some	stored	fat	and	burning	some
lean	mass.	How	much	of	each	is	used	depends	on	the	amount	of	fat	the	individual	carries.	We
call	this	dependence	the	energy	partition	function,	and	different	researchers	have	proposed
different	formulas	for	it.	The	form	of	the	energy	partition	function	we	present	here	was
suggested	by	Forbes	in	2000	(Forbes,	2000),	though	the	version	we	use	differs	slightly	from
Forbes’	original	work.	For	any	caloric	excess	or	deficit,	the	proportion	applied	to	changes	in
fat	and	lean	are	determined	by	the	energy	partition	function	given	by



As	before,	F	represents	the	amount	of	body	fat	in	pounds,	and	we	have	a	new	parameter,	 ,
which	we	call	the	energy	partition	parameter.	Note	that	regardless	of	the	value	for	 ,	the
sum	of	our	two	proportions	is	always	one.	In	his	work	Forbes	found	a	value	of	 .	We
use	 	since	this	value	produces	better	agreement	with	Hall’s	model	(Hall	et	al.,	2011).

In	the	next	example	we	show	how	the	energy	partition	function	works.

Example	8.13:

Suppose	Max	and	Paul	both	weigh	200 pounds.	Max	is	30%	body	fat	and	Paul	is	10%
body	fat.	If	they	each	experience	a	calorie	deficit	of	500	calories,	what	proportion	of	that
deficit	will	be	made	up	for	by	burning	fat?

For	Max	we	know	he	is	carrying	 	pounds	of	fat.	Thus	the	proportion	of	his

energy	deficit	that	is	made	up	by	burning	fat	is	 .	So	Max	will
burn	 	calories	worth	of	stored	fat	and	the	remaining	45.5	calories
from	stored	lean.

Paul	on	the	other	hand	only	has	20	pounds	of	body	fat.	Thus	the	proportion	of	his	energy

deficit	that	is	made	up	by	burning	fat	is	 .	So	Paul	will	burn	
	calories	worth	of	stored	fat	and	the	remaining	115.5	calories	from

stored	lean.

The	final	step	before	we	are	in	a	position	to	construct	a	model	for	changes	in	body
composition	is	to	determine	the	weight	changes	in	fat	and	lean	based	on	the	calories	of	each	as
given	by	the	energy	partition	function.

8.4.4	Energy	Content	of	Fat	and	Lean
In	the	previous	section	we	saw	that	for	a	given	calorie	deficit	or	surplus,	some	of	that	delta	is
due	to	a	change	in	body	fat,	and	some	is	due	to	a	change	in	lean	mass.	However,	knowing	how
many	calories	of	each	are	involved	does	not	quite	tell	us	what	we	want	to	know,	and	that	is
how	much	the	weight	of	each	changes.	In	this	situation	we	can	no	longer	use	the	3500	calorie
per	pound	rule	because	now	we	have	to	ask,	“A	pound	of	what?”

It	turns	out	that	fat	is	much	more	energy	dense	than	lean.	In	fact	from	Hall	we	know	that	fat
contains	about	4279.43	calories	per	pound,	while	lean	contains	only	823.38	calories	per
pound	(Hall	K.	D.,	2008).	Thus,	if	we	could	choose	to	lose	(or	gain)	1	pound	of	pure	fat,	it
would	take	a	calorie	deficit	(or	surplus)	of	about	4280	calories	rather	than	the	standard	3500
calories.	Similarly,	if	we	could	choose	to	lose	(or	gain)	1	pound	of	pure	lean,	it	would	only
require	a	calorie	deficit	(or	surplus)	of	823	calories.

The	difference	in	energy	densities	and	the	results	of	Example	8.13	mean	that	we	have	a	“good



news/bad	news”	situation	for	those	who	are	obese	and	seeking	to	lose	weight.	On	the	one
hand,	the	energy	partition	function	tells	us	that	any	weight	that	an	obese	person	loses	will	be
virtually	all	fat.	On	the	other	hand,	because	any	weight	loss	will	be	almost	all	fat,	it	takes	more
of	a	calorie	deficit	for	an	obese	person	to	lose	a	pound	than	it	does	for	a	lean	person.	We	show
this	with	our	next	example.

Example	8.14:

Consider	Max	and	Paul	from	Example	8.13.	Suppose	each	man	incurs	a	calorie	deficit	of
4000	calories	over	the	course	of	a	week.	Estimate	how	much	fat,	lean,	and	total	body
weight	each	man	loses	during	the	week.

We	assume	for	the	sake	of	this	example	that	their	energy	partition	proportions	do	not
change	during	the	week.	From	Example	8.13	we	know	that	0.909	is	the	proportion	of
Max’s	deficit	that	will	be	made	up	by	burning	stored	fat.	Thus	he	burns	

	calories	worth	of	fat.	Because	fat	contains	4279.43	calories	per

pound,	Max	burns	 	pounds	of	fat.	Similarly	Max	burns	 	pounds
of	lean	for	a	total	of	 	pounds	of	body	weight.

For	Paul,	who	is	much	leaner,	the	situation	is	different.	We	know	from	Example	8.13	that
Paul’s	energy	proportion	assigned	to	body	fat	is	0.769.	Thus	he	burns	

	calories	worth	of	fat.	Because	fat	contains	4279.43	calories	per

pound,	Paul	burns	 	pounds	of	fat.	Similarly	Paul	burns	 	pounds
of	lean	for	a	total	of	 	pounds	of	body	weight.

These	results	show	that	Max	loses	more	fat	than	Paul,	but	Paul	loses	more	weight	than
Max.	Thus	we	have	some	evidence	for	the	fact	that	it	is	harder	for	obese	people	to	lose
weight,	and	it	is	because	even	though	they	are	losing	more	fat,	it	takes	a	larger	calorie
deficit	for	them	to	lose	body	weight.

The	“3500	calories	per	pound”	assumption	makes	no	distinction	between	fat	and	lean,	and
given	the	different	energy	densities	of	fat	and	lean,	there	must	be	some	percentage	of	each
implied	by	the	assumption.	We	examine	the	implied	proportions	in	the	next	example.



Example	8.15:

Find	the	implied	percentage	of	fat	and	lean	in	the	3500-calorie	assumption.

Since	3500	calories	per	pound	falls	between	the	values	for	pure	fat	(4279	calories	per
pound)	and	pure	lean	(823	calories	per	pound),	there	must	be	some	percentage	of	fat	and
lean	that	results	in	3500	calories	per	pound.	If	we	let	x	represent	the	proportion	of	fat	in
our	standard	pound	of	body	weight,	then	we	will	have

Next	we	solve	for	x:

Thus	the	implied	proportion	of	fat	in	the	standard	3500	calories	per	pound	is	0.77,	which
means	the	proportion	of	lean	is	0.23.

In	the	next	section	we	finally	see	how	to	incorporate	body	composition	into	our	body	weight
model.

8.4.5	Section	Exercises

1.	 Calculate	how	much	body	fat	and	how	much	lean	body	mass	a	person	has	who	weighs	205
pounds	and	is	29%	body	fat.

2.	 Joyce	and	Chloe	both	weigh	125	pounds,	but	Joyce	has	17%	body	fat	and	Chloe	has	27%
body	fat.	Estimate	the	REE	for	both	Joyce	and	Chloe.

3.	 Estimate	your	own	body	fat	percentage	using	the	relevant	equation	by	the	Navy.

4.	 Estimate	your	own	body	fat	percentage	using	the	relevant	equation	by	Bailey.

5.	 Estimate	your	own	body	fat	percentage	using	the	relevant	equation	by	Jackson.

6.	 Extension:	Use	the	Jackson	equation	to	estimate	how	much	weight	you	have	to	lose	in
order	to	decrease	your	body	fat	by	5%	points.

7.	 Estimate	your	own	REE	based	on	the	Nelson	formula.	How	does	it	compare	to	the	MSJ
formula	for	you?

8.	 Suppose	Max	weighs	160 pounds	and	is	28%	body	fat.	If	Max	arranges	a	calorie	deficit	of



400	calories,	what	proportion	of	that	deficit	will	be	made	up	for	by	burning	fat	and	what
proportion	by	burning	lean?

9.	 Suppose	Dianne	weighs	155	pounds	and	is	24%	body	fat.	She	incurs	a	calorie	deficit	of
3500	calories	over	the	course	of	a	week.	Estimate	how	much	fat,	lean,	and	total	body
weight	Dianne	should	expect	to	lose	during	the	week.

10.	 Suppose	you	incur	a	calorie	deficit	of	2500	calories	over	the	course	of	a	week.	Estimate
how	much	fat,	lean,	and	total	body	weight	you	would	expect	to	lose	during	the	week.

11.	 Extension:	Create	an	Excel	spreadsheet	for	calculating	body	fat	percentage	based	on	the
Navy	equations.	Make	judicious	use	of	“IF”	statements	to	make	the	spreadsheet	as	user
friendly	as	possible.

12.	 Extension:	Create	an	Excel	spreadsheet	for	calculating	body	fat	percentage	based	on	the
Covert	Bailey	equations.	Make	judicious	use	of	“IF”	statements	to	make	the	spreadsheet	as
user	friendly	as	possible.

8.5	THE	BODY	COMPOSITION	MODEL	FOR	BODY
WEIGHT
We	now	have	enough	information	to	construct	our	new	body	composition	model	for	body
weight.	We	develop	equations	for	 	and	 	separately	and	then	use	the	fact	that	

	to	complete	the	model.	First,	we	use	Nelson’s	equation	for	REE	to	estimate
our	daily	energy	expenditure:

Recall	that	 	is	the	activity	level	that	represents	the	amount	of	physical	activity	engaged	in
during	a	typical	day.

Remembering	that	 	represents	the	constant	daily	calorie	intake,	we	see	that	on	a	given	day	we
have	a	calorie	deficit	(or	surplus)	of

The	proportion	of	this	difference	devoted	to	fat	loss	is	determined	by	the	Forbes-type	energy

partition	equation	 .	Furthermore,	we	know	that	for	every	4279.43	calories	devoted	to
fat	loss,	we	lose	a	pound	of	fat.	Thus	our	equation	for	the	amount	of	body	fat	in	pounds	is

In	a	similar	fashion	we	develop	the	equation	for	lean	body	mass	in	pounds:



To	implement	this	model	in	Excel,	we	have	a	fair	amount	of	setup	to	do	first.	We	want	the
model	to	be	user	friendly	and	as	flexible	as	possible,	so	we	set	aside	space	at	the	top	of	the
worksheet	for	the	user	to	enter	their	body	weight,	height,	age,	and	sex.	The	user	also	must	enter
an	activity	level	and	the	daily	calorie	intake.	We	allow	the	user	to	input	a	current	body	fat
percentage	if	known,	but	if	this	is	not	known	we	have	Excel	calculate	an	estimate	for	body	fat
percentage	using	Jackson’s	equations	from	Section	8.4.2.	Since	Jackson’s	equations	use	BMI,
we	get	Excel	to	calculate	BMI	in	a	separate	cell.	The	initial	setup	with	the	equation	for
Jackson’s	body	fat	estimate	displayed	is	given	in	Figure	8.8.

FIGURE	8.8	Excel	setup	for	Jackson’s	body	fat	equation.

Next	we	use	the	initial	body	fat	percentage	and	current	body	weight	to	calculate	the	initial
values	for	body	fat	and	lean	body	mass.	This	initial	setup	with	formula	showing	is	shown	in
Figure	8.9.	Note	that	body	weight	is	just	the	sum	of	fat	and	lean.

FIGURE	8.9	Excel	setup	for	initial	values	of	fat	and	lean.

Once	initial	values	are	set	for	body	fat	and	lean,	we	enter	the	DDS	formulas	for	each.	We	also
add	a	column	to	keep	track	of	the	user’s	body	fat	%,	which	is	just	pounds	of	body	fat	divided
by	total	body	weight.	The	Excel	spreadsheet	with	the	formula	for	 	showing	is	given	in
Figure	8.10.



FIGURE	8.10	Excel	setup	for	body	composition	model.

We	finish	this	section	with	a	computational	example.

Example	8.16:

Maria	is	20	years	old,	stands	5′6″	tall,	and	weighs	155	pounds.	She	is	moderately	active
and	consumes	1900	calories	per	day.	Project	Maria’s	body	weight	and	body	fat
percentage	1	month	from	today.

Since	we	are	not	given	an	initial	body	fat	percentage	for	Maria,	we	use	Jackson’s	estimate
based	on	her	other	parameters.	We	show	the	screenshot	with	all	parameters	entered	in
Figure	8.11.

Next	we	need	only	drag	the	model	down	to	1	month	(day	31	in	this	case).	The	results	are
shown	in	Figure	8.12	with	most	rows	hidden.

We	see	that	Maria’s	body	weight	is	projected	to	be	152.8	pounds	and	her	body	fat
percentage	is	projected	to	be	29.0%.	Thus	the	model	predicts	that	a	1900-calorie	diet	will
lead	to	Maria	losing	about	one	half	of	a	pound	per	week.



FIGURE	8.11	Body	composition	model	setup	for	Example	8.16.

FIGURE	8.12	Body	composition	model	projections	for	Example	8.16.

We	often	want	to	know	what	to	expect	from	our	body	weight	over	common	time	periods	such
as	1	week,	1	month,	etc.	We	can	save	ourselves	a	lot	of	scrolling	if	we	take	the	time	now	to
display	these	values	in	our	spreadsheet	where	they	are	easy	to	see.	We	need	only	reference	the
correct	cell	for	each	value.	Once	that	is	done,	these	values	automatically	update,	and	we	avoid
having	to	scroll	down	in	the	spreadsheet	to	find	the	ones	we	want.	In	Figure	8.13	we	show	the
setup	for	viewing	both	body	weight	and	body	fat	percentage	predictions	over	some	common
time	periods.



FIGURE	8.13	Excel	results	for	common	time	periods	of	interest.

We	observe	that	the	projections	for	year	5	and	year	10	for	Maria	in	Example	8.16	are	the	same.
This	indicates	that	the	model	predicts	her	weight	and	body	fat	%	will	stabilize	at	132.8	pounds
and	25.1%	body	fat	if	she	continues	to	be	moderately	active	and	consume	1900	calories	per
day.

As	with	any	mathematical	model,	we	should	remain	somewhat	skeptical	about	model
projections	that	are	for	so	far	into	the	future.	In	particular	for	this	model,	we	have	neglected	the
effects	of	aging,	which	tend	to	decrease	our	energy	expenditure	over	time.	Thus	the	long-term
projections	for	this	model	are	likely	to	overestimate	an	individual’s	calorie	needs	and	hence
underestimate	an	individual’s	body	weight.

Next	we	analyze	long-term	projections	for	body	weight	by	performing	an	equilibrium	analysis.

8.5.1	Equilibrium	Analysis
The	long-term	behavior	of	our	body	composition	model	is	more	complicated	than	many	of	our
previous	models.	For	one	thing	our	variable	calorie	expenditure	model	allowed	us	to	find	an
individual’s	long-term	weight	based	on	the	initial	parameters	without	having	to	use	Excel.	This
was	because	the	model	turned	out	to	be	an	affine	model	and	had	a	stable	equilibrium	value	
that	was	independent	of	the	initial	body	weight.

For	our	current	model	we	are	not	so	lucky:	for	a	given	initial	body	weight,	we	end	up	with
different	long-term	weights	depending	on	the	initial	body	composition.	First	we	verify	this
claim	with	an	Excel	example.

Example	8.17:

Joe	and	Carl	are	moderately	active,	5′10″	tall,	25-year-old	males	who	both	weigh	180
pounds.	Joe	has	20%	body	fat	and	Carl	has	15%	body	fat.	Use	the	body	composition
model	to	predict	their	long-term	weights	under	a	daily	diet	of	2800 kcal.

To	make	sure	we	get	both	weights	to	stabilize,	we	drag	the	model	equations	down	to	a
time	of	10	years.	Plugging	in	Joe’s	parameters	gives	us	a	projected	long-term	weight	of



188.7	pounds	at	21.6%	body	fat.	His	results	are	shown	in	Figure	8.14.

For	Carl	we	just	change	the	initial	body	fat	percentage	to	15%	and	note	that	his	projected
long-term	weight	is	175.2	at	14.2%	body	fat.	Carl’s	results	are	shown	in	Figure	8.15.

For	the	same	daily	diet,	Joe	is	projected	to	gain	almost	9	pounds,	while	Carl	will	actually
lose	almost	5.	The	differences	in	body	composition	and	the	concomitant	differences	in
calorie	expenditure	have	led	to	different	long-term	weights;	this	is	something	unaccounted
for	by	our	previous	models.

FIGURE	8.14	Joe’s	body	composition	projections	for	Example	8.17.

FIGURE	8.15	Carl’s	body	composition	projections	for	Example	8.17.

To	help	us	understand	this	long-term	behavior,	we	begin	our	usual	process	of	finding
equilibrium	points	by	solving	for	 	such	that



Concentrating	on	 	first,	we	see	after	a	little	simplifying	that	we	need	to	solve	the	equation

Since	a	product	can	only	be	zero	if	at	least	one	of	its	factors	is	zero,	we	have	two	possibilities:

either	 ,	which	implies	 	and	is	not	biologically	possible,	or	
.

Examining	the	equation	for	 	leads	to	the	same	result:	the	only	biologically	possible	solution
is	when	we	have	 .

Note	that	intuitively	the	equilibrium	points	mean	the	same	thing	as	for	our	previous	models:
body	weight	will	remain	stable	whenever	calories	in	 	equals	calories	out	

.	The	difference	is	that	people	who	start	at	the	same	weight	but
different	body	compositions	end	up	at	different	equilibrium	points	because	they	have	different
calorie	expenditures.	Unfortunately,	unlike	the	variable	calorie	expenditure	model	from
Section	8.2,	we	cannot	find	the	long-term	point	for	a	particular	choice	of	parameters	without
using	Excel.	In	our	next	example	we	check	our	equilibrium	equation	with	Joe	and	Carl	from
Example	8.17.



Example	8.18:

Show	that	the	long-term	values	for	Joe	and	Carl	satisfy	the	equilibrium	equation	
.

Recall	that	Joe	and	Carl	started	with	identical	parameters	including	initial	body	weight
but	that	they	had	different	body	fat	percentages.	We	need	to	enter	the	correct	parameters
for	each	man	and	observe	the	values	for	fat	and	lean	once	they	have	stabilized.	For	Joe
our	Excel	work	projects	long-term	amounts	of	body	fat	and	lean	as	 	and	

.	Plugging	these	values	along	with	 	and	 	into	the	equilibrium
equation	yields

For	Carl	the	initial	body	fat	was	15%.	His	long-term	values	for	fat	and	lean	are	
	and	 .	Plugging	these	values	along	with	 	and	

into	the	equilibrium	equation	yields

The	results	for	both	men	are	correct	to	within	rounding	error.

The	equation	 	represents	a	straight	line	in	the	F,L-phase
plane	(see	Section	3.2),	which	we	can	see	more	easily	once	we	rewrite	the	equation	in	slope–
intercept	form:

Unlike	previous	models	where	we	could	expect	one,	two,	or	perhaps	a	few	different
equilibrium	points,	this	line	represents	the	presence	of	infinitely	many	equilibrium	points—one
for	every	point	on	the	line.

It	is	worthwhile	to	spend	some	time	thinking	about	the	implications	of	this	line	for	body

weight.	Notice	that	the	slope	of	the	line,	 ,	is	constant	regardless	of	the	values	for

all	other	parameters.	On	the	other	hand,	the	L-intercept,	 ,	is	determined	by	the



daily	calorie	intake	and	the	activity	level,	both	of	which	are	under	the	control	of	the	individual.
Increasing	calorie	intake	raises	the	line	vertically,	which	corresponds	to	higher	long-term	body
weights.	Lowering	calorie	intake	results	in	lower	long-term	body	weights.	Similarly,
increasing	the	activity	level	serves	to	lower	the	line	vertically	and	thus	lowers	long-term
weight	projections.	Decreasing	activity	level	has	the	opposite	effect.
Thus	in	terms	of	long-term	body	weight	changes,	we	can	set	the	location	of	the	line	we	will
eventually	reach	by	adjusting	our	calorie	intake	and	activity	level,	but	the	exact	location	on	the
line	where	we	will	end	up	is	determined	by	our	initial	body	composition.

8.5.2	Phase	Plane	Diagram
Whenever	we	have	an	entire	curve	or	line	of	equilibrium	values,	we	have	what	is	called	an
invariant	manifold,	and	creating	a	phase	plane	diagram	can	help	us	understand	how	the
presence	of	an	invariant	manifold	affects	the	long-term	behavior	of	our	model.

In	the	example	that	follows,	we	examine	a	phase	plane	diagram	for	the	body	composition
model	in	the	F,L-plane.

Example	8.19:

Suppose	Julie	is	a	23-year-old	female	who	is	5′5″	tall,	weighs	130	pounds,	and	is	highly
active.	Create	a	phase	plane	diagram	that	gives	body	composition	projections	for	Julie	for
a	variety	of	body	compositions	assuming	a	constant	daily	calorie	intake	of	 .

We	know	that	 ,	 ,	and	 .	We	also	know	Julie’s	initial	weight	is	
	pounds.	What	we	do	not	know	is	how	much	body	fat	Julie	has,	and	we	know

that	this	will	influence	Julie’s	long-term	weight.

To	give	a	graphical	representation	of	the	possibilities	for	Julie,	we	create	a	phase	plane
diagram	in	the	L,F-plane	that	includes	trajectories	for	Julie’s	body	composition	for	a
variety	of	initial	body	compositions.	This	will	give	us	a	global	understanding	of	what	to
expect	for	any	woman	with	the	same	parameters	as	Julie.

Remembering	that	 ,	we	can	represent	all	possible	initial	body
compositions	for	Julie	with	the	equation	 .	This	gives	us	a	straight	line	in	the
L,F-plane	that	in	slope–intercept	form	is	given	by	 .	A	graph	of	this	line	is
shown	in	Figure	8.16.



FIGURE	8.16	Possible	initial	body	compositions	for	a	body	weight	of	130 pounds.

The	line	divides	the	plane	into	two	regions.	The	region	above	and	to	the	right	of	the	line
represents	a	net	weight	gain,	while	the	region	below	and	to	the	left	of	the	line	represents	a
net	weight	loss.

We	know	from	our	equilibrium	analysis	that	Julie’s	long-term	body	composition	will	be

somewhere	on	the	equilibrium	line	in	the	L,F-plane	given	by	 .
We	plot	the	equilibrium	line	along	with	the	initial	body	composition	line	in	Figure	8.17.

FIGURE	8.17	Initial	body	composition	line	along	with	equilibrium	line.

Julie	must	start	somewhere	on	the	initial	body	composition	line	and	must	end	up



somewhere	on	the	equilibrium	line.	To	get	an	idea	of	how	the	ending	point	is	related	to	the
starting	point,	we	plot	trajectories	for	a	variety	of	initial	body	compositions	and	see
where	they	end	up.	We	present	such	a	graph	in	Figure	8.18.

FIGURE	8.18	Phase	plane	diagram	for	body	composition	model.

All	trajectories	move	toward	the	equilibrium	line,	but	the	initial	body	composition
determines	where	on	that	line	we	end	up.	Because	all	trajectories	tend	toward	the	line	of
equilibrium	values,	we	call	the	line	an	attracting	invariant	manifold	(Chow	&	Hall,
2008).

By	placing	our	cursor	on	the	Excel	graph	over	the	points	where	the	curves	meet	the
equilibrium	line,	we	can	see	the	coordinates	for	fat	and	lean.	By	adding	the	coordinates
together,	we	can	determine	the	long-term	body	weight.	For	example,	if	Julie	starts	out	with
a	body	fat	percentage	of	20%,	she	starts	at	the	point	 .	Her	long-term
projection	is	the	point	on	the	equilibrium	line	given	by	 .	Thus	her
projected	long-term	weight	is	 	pounds,	and	her	projected	long-term	body

fat	percentage	is	 	On	the	other	hand,	if	Julie’s	initial	body	fat	percentage	is
30%,	she	will	start	at	the	point	 	and	end	at	the	point	

.	Her	long-term	weight	in	the	second	case	is	projected	to	be	

	pounds,	while	her	body	fat	percentage	is	projected	at	 .
This	should	seem	reasonable	since	we	know	that	lean	body	mass	burns	more	calories	than
fat.	Thus	leaner	individuals	will	have	a	greater	calorie	deficit	under	the	same	diet	than
those	with	more	body	fat	and	hence	will	end	up	weighing	less.	We	note	that	the	graph
shows	that	if	Julie	has	an	initial	body	fat	percentage	above	about	45%,	she	will	end	up
gaining	weight.



In	the	next	example	we	show	how	we	can	use	the	intersection	of	the	initial	body	composition
line	and	the	equilibrium	line	to	our	advantage.

Example	8.20:

Mark	is	a	sedentary,	5′8″	male	who	is	40	years	old	and	weighs	195	pounds.	Mark	knows
from	careful	tracking	that	his	body	weight	remains	constant	when	he	consumes	about	2000
calories	per	day.	Determine	Mark’s	body	fat	percentage.

The	idea	here	is	that	if	Mark’s	weight	is	stable,	then	his	current	body	composition	must
put	him	exactly	at	the	intersection	of	the	line	 	and	the	line	

.	Otherwise,	Mark’s	trajectory	would	move	him	off	of	the	initial
body	composition	line	and	toward	the	equilibrium	line.

Finding	this	point	of	intersection	is	a	matter	of	setting	the	two	equations	equal	to	each
other	and	solving	for	F.	We	have

Knowing	Mark’s	amount	of	initial	body	fat,	we	compute	his	initial	body	fat	percentage	to

be	 ,	or	32%.

In	the	next	example	we	consider	the	implications	of	the	model	from	an	individual	perspective.

8.5.3	Individual	Weight	Trajectories
For	an	individual	with	a	given	set	of	parameters,	our	current	model	projects	what	body
compositions	and	body	weights	are	possible	for	that	individual	in	the	form	of	a	trajectory	in
the	F,L-plane.	Any	change	in	diet	or	activity	level	changes	where	on	the	trajectory	an
individual	will	end	up,	but	the	individual	will	not	leave	the	trajectory.	We	illustrate	this	point
in	the	next	example.

Example	8.21:

Consider	Julie	from	Example	8.19,	and	assume	she	currently	has	an	average	amount	of
body	fat	as	determined	by	Jackson’s	equation.	Graph	Julie’s	individual	body	composition
trajectory	and	indicate	where	she	will	end	up	for	different	combinations	of	diet	and
activity	level.



The	graph	in	Figure	8.19	is	Julie’s	body	composition	trajectory.	It	represents	all	of	her
possible	future	body	compositions	(and	hence	weights)	as	projected	by	the	model.	Where
she	ends	up	on	the	trajectory	depends	on	her	choices	regarding	diet	and	activity	level.

FIGURE	8.19	Possible	future	body	compositions	for	Julie	in	Example	8.21.

The	diamond	in	the	middle	of	the	graph	marks	Julie’s	current	body	composition.	If	she
consumes	more	calories	than	she	burns	(either	by	increasing	her	intake	or	decreasing	her
activity	level),	she	will	move	along	the	curve	up	and	to	the	right.	This	would	represent	an
increase	in	body	fat	and	weight.	If	she	consumes	fewer	calories	than	she	burns	(either	by
decreasing	her	intake	or	increasing	her	activity	level),	she	will	move	along	the	curve
down	and	to	the	left.	This	would	represent	a	decrease	in	body	fat	and	weight.

In	Figure	8.20	we	include	the	equilibrium	line	corresponding	to	three	different
combinations	of	diet	and	activity	level	for	Julie.	The	points	where	the	lines	intersect
Julie’s	trajectory	are	the	points	where	she	will	end	up	on	her	trajectory	in	each	case.



FIGURE	8.20	Long-term	body	compositions	for	Julie	for	three	different	intake/activity
level	combinations.

The	bottom	line	represents	a	daily	intake	of	1500	calories	and	a	high	activity	level.	The
middle	line	represents	a	daily	intake	of	2000	calories	and	a	moderate	activity	level.	The
top	line	represents	a	daily	intake	of	2200	calories	and	a	light	activity	level.

The	fact	that	changes	to	diet	and	exercise	level	do	not	move	us	off	of	our	trajectory,	just	to
different	points	along	it,	leads	to	the	question,	“Is	it	possible	for	someone	to	change	their
trajectory?”

Unfortunately	we	cannot	tell	from	the	model	because	the	model	does	not	distinguish	among
different	types	of	activity	in	the	activity	level.	In	particular,	the	model	neglects	the	effect	that	a
well-designed	strength	training	program	can	have	on	body	composition.	Strength	training,
especially	weight	lifting,	can	build	lean	muscle	mass	while	limiting	fat	gain.	In	this	way	it	has
the	potential	to	put	us	on	a	new	trajectory	since	for	a	given	weight	we	will	be	further	up	and	to
the	left	along	the	initial	body	composition	line.	Then	any	decrease	in	daily	intake	or	increase	in
activity	level	will	lead	to	lower,	leaner	body	weights	in	the	long-term.

In	their	2008	paper	“The	Dynamics	of	Human	Body	Weight	Change,”	Chow	and	Hall	note	that
all	body	weight	models	of	the	kind	we	discuss	in	this	chapter	fall	into	one	of	two	types.	For	a
fixed	diet	and	energy	expenditure,	models	either	predict	an	attracting	invariant	manifold,	where
there	are	an	infinite	number	of	body	compositions	possible	at	equilibrium,	or	they	predict	a
single	stable	equilibrium	point.	Interestingly,	it	is	not	yet	known	which	type	of	model	is	the
correct	one	for	human	body	weight.	The	data	is	insufficient	to	tell	at	this	time	(Chow	&	Hall,
2008).



8.5.4	Section	Exercises

1.	 Eduardo	is	20	years	old,	stands	5′	9″	tall,	and	weighs	165	pounds.	He	is	highly	active	and
consumes	2200	calories	per	day.	Project	Eduardo’s	body	weight	and	body	fat	percentage	1
week,	1	month,	6	months,	1	year,	and	5	years	from	today.

2.	 Use	the	body	composition	Excel	model	to	show	that	two	individuals	of	the	same	weight,
height,	age,	sex,	activity	level,	and	daily	calorie	intake	can	have	very	different	long-term
weight	projections.

3.	 Use	a	daily	calorie	intake	of	your	choice	and	the	Excel	body	composition	model	to	project
your	own	body	composition	and	body	weight	for	1	week,	1	month,	6	months,	1	year,	and	5
years	from	today.

a.	 Run	the	projections	using	Jackson’s	estimate	for	your	initial	body	fat	percentage.

b.	 Run	the	projections	using	the	appropriate	Navy	equation	to	estimate	your	initial	body
fat	percentage.

c.	 Run	the	projections	using	the	appropriate	Bailey	equation	to	estimate	your	initial	body
fat	percentage.

d.	 Discuss	how	much	of	a	difference	in	long-term	weight	projection	results	from	using	the
different	body	fat	estimates.

4.	 Show	that	the	long-term	values	for	body	fat	and	lean	mass	for	Eduardo	in	Exercise	satisfy
the	equilibrium	equation	 .

5.	 Show	that	the	long-term	values	for	body	fat	and	lean	mass	you	found	for	yourself	in
Exercise	satisfy	the	equilibrium	equation	 .

6.	 Jennifer	is	a	moderately	active,	5′4″	female	who	is	30	years	old	and	weighs	125	pounds.
Jennifer	knows	from	careful	tracking	that	her	body	weight	remains	constant	when	she
consumes	about	1900	calories	per	day.	Determine	Jennifer’s	body	fat	percentage.

7.	 We	often	use	the	estimate	that	1	pound	of	body	weight	contains	approximately	3500
calories.	Use	the	Excel	body	composition	model	to	estimate	how	many	calories	would	be
contained	in	a	1-pound	change	of	your	own	body	weight.

8.	 Decide	on	a	personal	weight	goal.	Use	the	body	composition	model	to	determine	the
required	daily	calorie	intake	to	reach	your	goal	in:

a.	 1	week

b.	 1	month

c.	 1	year

d.	 5	years

e.	 10	years



9.	 Extension:	Set	a	2-year	weight	goal	and	use	the	body	composition	Excel	model	to	find	the
daily	calorie	intake	necessary	for	you	to	achieve	your	goal.	Using	this	daily	calorie	intake,
answer	the	following.

a.	 What	percentage	of	the	long-term	weight	change	takes	place	in	the	first	month?

b.	 What	percentage	of	the	long-term	weight	change	takes	place	in	the	first	6	months?

c.	 What	percentage	of	the	long-term	weight	change	takes	place	in	the	first	year?

10.	 Repeat	Exercises	and	using	a	body	fat	percentage	goal	rather	than	a	weight	goal.

8.6	POINTS-BASED	SYSTEMS:	THE	WEIGHT
WATCHERS	MODEL
Weight	loss	is	big	business	in	the	United	States:	as	of	2010	the	weight	loss	industry	in	the
United	States	was	worth	over	$60	billion	(Sandilands,	2010).	One	of	the	largest	companies	is
Weight	Watchers	International,	Inc.	The	Weight	Watchers	system	has	two	main	components.	The
first	component	is	a	social	support	structure	provided	by	monthly	meetings	where	subscribers
help	each	other	develop	healthier	eating	habits.	The	second	component	is	a	points-based	diet
tracking	system	designed	to	help	subscribers	lose	weight	in	a	healthy	way.	In	this	section	we
analyze	the	mathematics	behind	the	points-based	system,	which	is	now	called	the	PointsPlus®
program.

8.6.1	Basic	PointsPlus	Formula
The	PointsPlus	program	represented	an	overhaul	of	the	original	Weight	Watchers	Points
system.	Subscribers	are	assigned	an	allotment	of	PointsPlus	that	they	“spend”	each	day	as	they
consume	calories.	The	number	of	PointsPlus	assigned	is	based	on	the	subscriber’s	body	weight
and	weight	goal.	Some	foods	cost	more	in	points	than	others	with	healthier	choices	generally
costing	fewer	points	to	eat	than	less	healthy	choices.	Fruits	and	vegetables,	for	example,	cost
zero	points	and	so	can	be	consumed	freely	throughout	the	day.	As	subscribers	lose	weight,	their
points	allotment	decreases	to	reflect	an	assumed	decrease	in	calorie	expenditure.

The	PointsPlus	system	incorporates	recent	research	in	nutrition	science	that	indicates	some
foods	are	more	difficult	for	the	body	to	process	than	others.	For	example,	100	calories	of
protein	is	much	more	difficult	for	the	body	to	process	than	100	calories	of	fat.	Thus	a	larger
percentage	of	the	protein	calories	will	be	burned	during	digestion	than	will	be	for	fat.	This
phenomenon	is	known	as	the	thermic	effect	of	food	(TEF).	Roughly	speaking,	protein	is	the
hardest	to	digest,	followed	by	carbohydrates	and	then	fat,	which	is	very	easy	for	the	body	to
digest.	The	theory	is	that	because	of	this	effect,	consuming	1000	calories	of	protein	will	lead	to
less	weight	change	than	1000	calories	of	fat.

In	Patent	US20100055652,	Weight	Watchers	describes	how	they	assign	points	to	foods	based
on	how	much	protein,	carbohydrate,	fat,	and	fiber	they	contain	(Miller-Kovach	et	al.,	2010).
Each	type	of	macronutrient	is	“discounted”	based	on	how	difficult	they	are	for	the	body	to



process,	and	hence	the	proportion	of	each	type	of	macronutrient	that	is	actually	absorbed	by	the
body	is	different.	The	proportions	used	by	Weight	Watchers	are	given	in	Table	8.5.

TABLE	8.5	Proportions	of	Macronutrients	Assumed	to	be	Absorbed	by	the	Body

Macronutrient Proportion	Affecting	Body	Weight
Protein 0.80
Carbohydrate	(nonfiber) 0.95
Dietary	fiber 0.25
Fat 1.0

Different	macronutrients	also	have	different	energy	densities.	One	gram	of	fat,	for	example,
contains	9	calories,	while	one	gram	of	protein	contains	only	4.	Similarly,	one	gram	of
carbohydrate	(fiber	and	nonfiber)	contains	4	calories.

In	order	to	find	the	point	value	for	a	serving	of	a	particular	food,	we	first	find	the	amount	of
each	of	the	macronutrients	from	the	nutrition	label.	Let	P	be	grams	of	protein,	C	be	grams	of
carbohydrate,	and	F	be	grams	of	fat	per	serving.	Then	the	total	number	of	unadjusted	calories
(TC)	in	a	serving	can	be	found	by

Dietary	fiber	is	included	in	total	carbohydrates,	but	the	PointsPlus	system	treats	dietary	fiber
separately.	Thus	we	let	DF	be	grams	of	dietary	fiber	and	write	an	equivalent	formula	for	total
calories	as

As	we	mentioned	before	not	all	calories	are	created	equal,	and	our	next	step	is	to	calculate
total	calories	adjusted	for	the	TEF	using	the	Weight	Watchers	parameters	in	Table	8.2.	The
equation	for	total	adjusted	calories	(TAC)	in	a	serving	of	food	is	given	by

Multiplying	coefficients	together	gives	us

In	our	next	example	we	show	how	to	find	total	calories	and	total	adjusted	calories	for	a
serving	of	peanut	butter.



Example	8.22:

Find	the	total	calories	and	total	adjusted	calories	for	a	serving	of	peanut	butter.

According	to	the	nutrition	facts	label	on	a	container	of	Peter	Pan	creamy	peanut	butter,	one
serving	of	peanut	butter	is	two	tablespoons	and	contains	210	calories.	Each	serving
contains	17 g	of	fat,	8 g	of	protein,	and	6 g	of	carbohydrate	including	2 g	of	dietary	fiber.
First	we	verify	the	total	calories	given	on	the	label:

Our	calculation	gives	209	calories	per	serving,	which	agrees	with	the	label	within
rounding	error.	Next	we	calculate	the	total	adjusted	calories,	that	is,	the	number	of
calories	that	will	be	available	to	the	body	after	the	TEF	has	been	factored	in.	We	get

Thus	the	total	adjusted	calories	for	one	serving	of	peanut	butter	is	about	196.	About	14
calories	of	the	peanut	butter	will	be	burned	as	the	body	digests	it.

Once	we	have	calculated	total	adjusted	calories	for	a	particular	food,	Weight	Watchers	assigns
a	whole	number	point	value	by	dividing	total	adjusted	calories	by	a	factor	that	appears	to	be
about	35	and	then	rounding	the	result.	Thus	the	PointsPlus	value	for	any	food	will	be
approximately	equal	to

rounded	to	the	nearest	whole	number.	Note	that	the	division	by	35	in	the	formula	means	that
roughly	speaking,	1	point	is	equivalent	to	about	35	adjusted	calories.	This	is	equivalent	to	1
point	equaling	38.89	calories	before	adjustment.



Example	8.23:

Find	the	PointsPlus	value	of	a	serving	of	peanut	butter.

Since	we	have	already	found	the	total	adjusted	calories,	the	PointsPlus	value	is	given	by

A	subscriber	who	eats	one	serving	of	peanut	butter	would	then	subtract	6	points	from	their
daily	allotment.

E.22	Rounding
With	Excel	we	can	create	our	own	PointsPlus	calculator.	We	allow	the	user	to	enter	the
amounts	of	protein,	total	carbohydrate,	fat,	and	dietary	fiber	from	any	food	nutrition	label,
and	then	we	get	Excel	to	report	the	equivalent	number	of	PointsPlus	for	that	food.	One
new	command	that	we	will	need	is	Excel’s	“ROUND”	function.	The	“ROUND”	command
accepts	a	number	as	an	input	along	with	the	number	of	decimal	places	to	round	to.	For
example,	the	command	“ROUND(10.53,1)”	willreturn	the	result	“10.5,”	while	the
command	“ROUND(10.53,0)”	will	return	the	result	“11.”	It	is	this	second	version	we
want	when	computing	whole	numbers	of	points.	The	Excel	setup	is	given	in	Figure	8.21.

FIGURE	8.21	PointsPlus	calculator	in	Excel.

Keeping	track	of	food	points	is	very	similar	to	keeping	track	of	total	calories,	but	it	is	subtly
different.	Keeping	track	of	points	in	this	way	encourages	the	user	to	opt	for	healthier	foods
because	healthier	foods	cost	less	out	of	their	daily	target.	Fruits	and	vegetables	are	obviously
privileged	in	this	system	because	they	count	as	zero	points.	However,	the	system	also	pushes
the	user	to	privilege	foods	high	in	protein	and	fiber,	which	are	often	healthier	than	those	high	in



carbohydrates	and	fat.

Next	we	see	how	Weight	Watchers	determines	an	individual’s	daily	PointsPlus	allotment.

8.6.2	Points	Allotments
Under	the	Weight	Watchers	system,	individuals	are	assigned	a	daily	PointsPlus	allotment	based
on	their	calorie	needs.	Individuals	are	also	given	49	weekly	points	to	use	as	they	see	fit
throughout	the	week.	If	all	weekly	points	are	used,	this	comes	to	7	points	per	day.	As	discussed
in	the	subsequent	section,	individuals	may	also	earn	extra	points	by	exercising.

Daily	PointsPlus	allotments	are	based	on	an	individual’s	calorie	requirements.	We	have
already	seen	one	method	for	estimating	such	calorie	needs	in	Section	8.2	where	we	used	the
MSJ	equation	multiplied	by	the	activity	level.	Weight	Watchers	uses	a	similar	kind	of	equation
that	calculates	daily	calorie	needs	(DC)	based	on	age,	weight,	height,	sex,	and	the	assumption
of	a	light	activity	level	as	a	base.	The	equations	for	males	and	females	over	19	years	old	can
be	found	in	the	National	Academies	Press	publication	Dietary	Reference	Intakes:	The
Essential	Guide	to	Nutrient	Requirements	(DRI,	2006)	and	are	as	follows:

As	before	age	is	in	years,	weight	is	in	pounds,	and	height	is	in	inches.

Next,	daily	calorie	needs	are	discounted	by	a	factor	of	0.90,	representing	an	average	value	for
the	TEF	for	the	various	macronutrients.	The	result	is	adjusted	daily	calories	(ADC)	given	by
the	equation

Again,	the	ADC	represents	the	calories	from	food	not	burned	during	digestion.

Because	the	goal	of	most	Weight	Watchers	subscribers	is	to	lose	weight,	Weight	Watchers
subtracts	the	equivalent	of	about	800	adjusted	calories	from	ADC.	This	equates	to	an	average
weight	loss	per	week	of	just	under	2	pounds.

Using	an	approximate	value	of	35	adjusted	calories	per	point,	we	start	with

points,	which	we	round	to	the	nearest	point.	Next	we	subtract	11	from	this	value,	and	that	will
give	us	our	initial	total	for	our	daily	PointsPlus	allotment:

The	subtraction	of	11	includes	an	adjustment	of	4	points	to	compensate	for	the	fact	that	fruits
and	vegetables	are	considered	“free”	and	an	adjustment	of	7	points	to	allow	the	subscriber	49



weekly	points	to	spend	at	their	discretion	throughout	the	week.

There	is	one	final	adjustment	to	make:	Weight	Watchers	places	an	upper	and	lower	limit	on	the
number	of	daily	points	it	considers	prudent,	namely,	71	and	26,	respectively.	So	if	our	daily
points	calculation	above	falls	below	26,	we	would	actually	use	26,	and	if	the	calculation	falls
above	71,	we	would	use	71.	Altogether	we	have	the	formula	given	by

The	“max”	function	accepts	two	numbers	as	inputs	and	returns	the	larger	of	the	two,	the	“min”
function	accepts	two	numbers	as	inputs	and	returns	the	smaller	of	the	two,	and	the	“round”
function	rounds	to	the	nearest	whole	point	value.

In	the	next	example	we	automate	the	calculation	our	daily	PointsPlus	target	with	Excel.



Example	8.24:

Find	the	daily	PointsPlus	target	for	Zack,	a	230-pound	man	who	is	5′8″	tall	and	24	years
old.

Plugging	Zack’s	parameters	into	the	daily	calorie	needs	formula	for	men	gives	an	estimate
of	3263	calories.	Then	the	adjusted	daily	calorie	number	will	be	

.	The	PointsPlus	allotment	will	therefore	be	equal	to

Since	the	rounded	value,	50,	is	between	26	and	71,	it	is	Zack’s	daily	PointsPlus	allotment.

We	check	our	work	by	automating	the	process	in	Excel.	We	have	done	this	sort	of	thing
many	times	before.	Here	we	give	the	Excel	setup	with	the	formula	for	the	PointsPlus
allotment	displayed	in	Figure	8.22.

FIGURE	8.22	Calculating	daily	PointsPlus	allotment	in	Excel.

In	addition	to	the	daily	allotment	for	PointsPlus,	Weight	Watchers	allocates	49	weekly	points	to
each	subscriber	to	use	when	and	how	they	choose	throughout	the	week.	These	weekly	points
expire	at	the	end	of	each	week	if	they	are	not	consumed.	Our	habit	will	be	to	assume	that	all	of
these	weekly	points	are	consumed	so	that	in	effect	we	can	increase	the	daily	points	total	by	7.
Thus	in	the	previous	example,	if	we	assume	Zack	consumes	all	of	his	weekly	points,	then	his
daily	point	allotment	is	in	effect	57.

Part	of	the	Weight	Watchers	system	is	to	encourage	physical	activity	by	awarding	extra
PointsPlus	for	exercising.	We	examine	how	this	is	done	in	the	next	section.



8.6.3	Activity	Points
The	daily	points	target	assumes	a	light	activity	level	as	a	starting	point.	Subscribers	can	then
earn	extra	points	by	exercising.	As	one	exercises,	one	burns	calories,	and	these	calories	earn
points	at	a	rate	of	about	1	point	for	every	77.8	calories	burned.	Thus	in	order	to	calculate
activity	points,	we	first	need	a	way	of	estimating	calories	burned	during	exercise.

Weight	Watchers	distinguishes	physical	activity	by	three	levels	of	intensity:	low,	moderate,	and
high.	As	rough	guidelines,	low	intensity	exercise	is	something	you	could	sing	while	doing,
moderate	intensity	exercise	is	something	you	could	talk	while	doing	but	not	sing,	and	high
intensity	exercise	is	something	you	could	only	talk	haltingly	while	doing	if	at	all.	Calorie	burn
rates	are	then	assigned	for	each	level	of	intensity	on	a	“per	pound	per	minute”	basis,	reflecting
the	fact	that	heavier	people	generally	burn	more	calories	than	lighter	people	for	the	same
activity.	Calorie	burn	rates,	based	on	values	provided	in	DRI	(2006),	are	given	by

Since	we	assume	every	77.8	calories	equals	one	point,	the	formulas	we	will	use	to	calculate
activity	points	earned	for	each	exercise	intensity	level	are	as	follows:

Here	“minutes”	are	the	minutes	spent	exercising,	and	W	is	body	weight	in	pounds.	We	note	that
in	the	context	of	food	and	daily	allotment,	1	point	is	roughly	equivalent	to	38.9	calories	of
food.	Since	exercise	only	earns	points	at	half	that	rate,	exercise	in	the	Weight	Watchers	system
should	create	an	additional	calorie	deficit	and	should	therefore	lead	to	faster	weight	loss.

Next	we	give	an	example	of	how	to	calculate	activity	points.



Example	8.25:

Tonya	weighs	150	pounds,	and	she	exercises	at	moderate	intensity	for	one	hour.	How
many	activity	points	does	she	earn?

Here	we	just	need	to	plug	in	Tonya’s	weight	to	the	formula	for	moderate	intensity
exercise.	We	get

After	rounding	we	see	that	Tonya	earns	3	activity	points	that	she	can	add	to	her	daily
PointsPlus	allotment.	It	is	a	straightforward	exercise	to	include	an	activity	points
calculation	in	our	Excel	spreadsheet.

In	the	next	section	we	are	finally	ready	to	set	up	a	dynamic	model	for	tracking	weight	changes
using	the	Weight	Watchers	PointsPlus	system.

8.6.4	PointsPlus	Dynamic	Model
The	Weight	Watchers	system	is	more	difficult	to	implement	in	Excel	than	previous	models	for	a
couple	of	reasons.	First,	the	use	of	points	rather	than	calories	means	we	have	to	convert	back
and	forth	from	calories	to	points.	To	do	so	we	will	use	the	estimate

Second,	unlike	previous	models	the	daily	caloric	intake	 	(given	in	points)	is	no	longer	a
constant.	The	way	the	system	works	is	to	lower	the	PointsPlus	allotment	and	hence	the	daily
calorie	intake	as	weight	declines.	The	idea	is	to	maintain	a	roughly	constant	calorie	deficit
rather	than	a	constant	calorie	intake.

We	saw	in	our	very	first	body	weight	model	that	any	model	that	involves	a	constant	calorie
deficit	has	no	equilibrium	and	eventually	leads	to	unrealistic	body	weights.	The	situation	is	a
little	different	with	the	Weight	Watchers	system	for	two	reasons.	One,	Weight	Watchers	sets	a
minimum	number	for	the	daily	allotment.	Two,	once	a	subscriber	reaches	their	goal	weight,
they	change	to	a	maintenance	phase	where	their	daily	PointsPlus	allotment	is	reset	to	a	level
intended	to	maintain	rather	than	lose	weight.

For	now	we	concentrate	on	calculating	body	weight	each	day.	As	body	weight	changes,	the
daily	calories,	adjusted	daily	calories,	PointsPlus	daily	allotment,	and	activity	points	all
change.	Thus	they	each	get	their	own	column.	We	have	already	seen	how	to	calculate	each	of
these	quantities,	so	we	input	the	equations	into	Excel,	being	careful	to	reference	the	body
weight	column	rather	than	the	initial	body	weight.	The	formula	for	DC	requires	an	IF	statement



based	on	sex,	and	the	formula	for	activity	points	requires	an	IF	statement	based	on	exercise
intensity.

We	assume	that	all	weekly	points	are	consumed,	along	with	the	built-in	assumption	of	4	points
for	fruits	and	vegetables.	Thus	we	add	11	points	each	day	to	the	standard	calculation	in	order
to	estimate	how	many	points	the	user	will	consume	without	exercise.

To	get	Excel	to	calculate	body	weight,	we	must	make	some	assumptions.	One	is	the	standard
estimate	that	there	are	3500	calories	in	1	pound.	Without	considering	activity	points,	our	user
will	consume	the	equivalent	of	 	calories	per	day.	Thus	the	daily
calorie	deficit	will	be

When	activity	points	are	considered,	we	must	recall	that	each	activity	point	represents	burning
77.8	additional	calories.	If	the	activity	points	are	all	consumed,	that	means	each	activity	point
results	in	an	additional	calorie	deficit	of	38.9	calories	per	point.	The	result	is	that	the	daily
calorie	deficit	with	activity	points	included	is	given	by

This	means	that	each	day	our	body	weight	will	decrease	by

pounds.	The	Excel	setup	with	the	formula	for	body	weight	displayed	is	given	in	Figure	8.23.

FIGURE	8.23	Calculating	body	weight	for	Weight	Watchers	PointsPlus	system.

Next	we	give	an	example	of	how	to	use	the	Weight	Watchers	PointsPlus	Excel	model.

Example	8.26:



Fred	is	a	new	Weight	Watchers	subscriber.	He	is	5′8″	tall,	weighs	230	pounds,	and	is	27
years	old.	His	goal	weight	is	170.	Determine	how	long	it	will	take	him	to	reach	his	goal
weight	if	(a)	he	does	not	exercise	or	if	(b)	he	exercises	for	30 min	each	day	at	moderate
intensity.

Once	again	we	assume	that	Fred	uses	all	of	his	weekly	points	along	with	the	4	points
assumed	for	fruits	and	vegetables.	These	assumptions	are	already	built	in	to	the	Excel
spreadsheet.	Next	we	enter	all	relevant	parameters	and	drag	the	model	down	until	we
reach	Fred’s	goal	weight	of	170.	The	Excel	results	are	presented	in	Figure	8.24	with	most
rows	hidden.	Without	exercise	it	will	take	Fred	about	34	weeks	to	reach	his	goal	weight,
or	about	8	months.

FIGURE	8.24	Dynamic	PointsPlus	model	projections	for	Example	8.26.

If	we	repeat	the	calculation	but	with	daily	exercise	set	to	30 min	at	moderate	intensity,	we
get	the	results	in	Figure	8.25.	With	exercise	it	will	take	Fred	31	weeks,	or	about	7	months,
to	reach	his	goal	weight.	He	will	also	be	much	fitter.



FIGURE	8.25	Dynamic	PointsPlus	model	projections	for	Example	8.26	including	daily
exercise.

As	a	final	example	we	examine	the	necessary	PointsPlus	allotment	for	Fred	to	maintain	his
goal	weight.

Example	8.27:

Suppose	in	the	previous	example	that	Fred	has	reached	his	goal	weight	of	170	pounds.
Determine	how	many	points	Fred	should	consume	per	day	to	maintain	his	weight.	Assume
no	activity	points.

All	that	is	required	here	is	to	determine	Fred’s	daily	calorie	requirement	at	his	goal
weight	and	then	divide	that	requirement	by	38.9	to	estimate	the	equivalent	number	of
points.	We	get

Thus	Fred’s	maintenance	point	level	would	be	 	points	per	day.	This	points	level
does	not	need	to	be	adjusted	for	weekly	points	or	for	fruits	and	vegetables.

The	maintenance	point	level	determined	by	the	equations	for	DC	is	not	the	maintenance	level
recommended	by	Weight	Watchers.	The	Weight	Watchers	approach	is	more	of	a	trial-and-error



approach	where	the	subscriber	initially	ups	their	daily	PointsPlus	allotment	by	6	points	and
then	checks	to	see	how	their	weight	responds.	If	they	continue	to	lose	weight,	then	they	add
another	6	points	and	check	again.	Once	they	are	at	a	point	level	at	which	they	maintain	their
weight,	they	stay	at	the	point	level	indefinitely.	It	is	not	clear	how	the	eventual	maintenance
levels	determined	in	this	way	compare	to	the	level	we	determined	in	our	example.	In	the
exercises	the	reader	is	invited	to	determine	how	daily	exercise	impacts	the	maintenance
PointsPlus	level.

8.6.5	Section	Exercises

1.	 Use	a	nutrition	facts	label	of	your	choice	to	find	the	total	calories	and	total	adjusted
calories	for	a	serving	of	the	food.

2.	 Use	a	nutrition	facts	label	of	your	choice	(different	from	the	one	in	the	previous	exercise)
to	find	the	total	calories	and	total	adjusted	calories	for	a	serving	of	the	food.

3.	 Find	the	PointsPlus	value	for	a	serving	of	the	food	in	Exercise	.

4.	 Find	the	PointsPlus	value	for	a	serving	of	the	food	in	Exercise	.

5.	 Find	the	daily	PointsPlus	target	for	Doug,	a	200-pound	man	who	is	5′10″	tall	and	22	years
old.

6.	 Find	your	own	daily	PointsPlus	target.

7.	 Kara	weighs	120	pounds,	and	she	exercises	at	high	intensity	for	30 min.	How	many	activity
points	does	she	earn?

8.	 How	many	activity	points	would	you	earn	by	walking	briskly	for	1 h?

9.	 How	many	minutes	of	moderate	intensity	exercise	would	it	take	for	you	to	earn	4	activity
points?

10.	 Sophie	is	a	new	Weight	Watchers	subscriber.	She	is	5′7″	tall,	weighs	190	pounds,	and	is	23
years	old.	Her	goal	weight	is	150	pounds.	Determine	how	long	it	will	take	her	to	reach	her
goal	weight	if	(a)	she	does	not	exercise	or	if	(b)	she	exercises	for	30 min	each	day	at	high
intensity.

11.	 Set	your	own	weight	goal	and	use	the	Excel	Weight	Watchers	model	to	determine	how	long
it	will	take	you	to	reach	it	if	(a)	you	do	not	exercise	or	if	(b)	you	exercise	for	a	length	of
time	and	intensity	of	your	choosing.

12.	 Suppose	in	Exercise	that	Sophie	has	reached	her	goal	weight	of	150	pounds.	Determine
how	many	points	she	should	consume	per	day	to	maintain	her	weight.	Assume	no	activity
points.

13.	 Once	you	meet	your	goal	weight	in	Exercise	,	determine	how	many	points	you	should
consume	per	day	to	maintain	your	weight.	Assume	no	activity	points.

14.	 Suppose	Sophie	in	Exercise	earns	4	activity	points	each	day.	What	should	her	new



maintenance	PointsPlus	level	be?

15.	 Suppose	you	exercise	each	day	for	a	length	of	time	and	intensity	of	your	choosing.	What
should	your	new	maintenance	PointsPlus	level	be?

16.	 Extension:	Using	your	own	parameters,	compare	the	daily	calorie	needs	estimated	by	the
DRI	equations	in	Section	8.6.2	(which	assume	a	light	activity	level)	to

a.	 The	Mifflin–St.	Jeor	estimate	(with	light	activity	level).

b.	 The	Harris–Benedict	estimate	(with	light	activity	level).

c.	 The	Livingston–Kohlstadt	estimate	(with	light	activity	level).

d.	 The	Nelson	estimate	(with	light	activity	level).

e.	 How	much	difference	is	there	among	the	methods?



APPENDIX	A	
THE	GEOMETRIC	SERIES	FORMULA
In	this	appendix	we	supply	a	proof	of	the	geometric	series	formula	from	Chapter	1.

Theorem	1.1

Let	c	be	any	real	number	and	let	x	be	any	real	number	such	that	 .	Then	for	any
positive	integer	n,	we	have

Proof:	The	proof	is	fairly	short	and	depends	on	a	clever	algebraic	trick.	Consider	the	sum	
,	and	call	this	sum	S:

Next	multiply	S	by	x	to	get

Now	we	subtract	S	from	xS	and	note	that	all	but	two	terms	cancel

Factoring	out	common	terms	on	each	side	of	the	equality	gives	us

We	divide	through	by	 	(which	is	okay	because	 )	to	get

and	finally	we	remember	what	S	represents:





APPENDIX	B	
LANCHESTER'S	SQUARE	LAW	AND	THE	FRACTIONAL
EXCHANGE	RATIO
This	appendix	supplies	a	proof	of	Lanchester’s	square	law.	The	law	is	based	on	Lanchester’s
classic	model	for	combat	between	two	sides,	Blue	and	Red:

The	number	of	Blue	and	Red	units	remaining	at	any	time,	t,	is	given	by	B(t)	and	R(t)
respectively,	and	the	fighting	effectiveness	is	given	by	b	for	Blue	and	r	for	Red.	For	our
discrete	version	of	Lanchester’s	model,	the	square	law	is	given	as	follows.

Theorem	3.2

Lanchester’s	Square	Law:	For	the	basic	Lanchester	combat	model,	the	following
identity	holds	for	all	t:

Proof:	We	prove	the	result	via	induction	on	the	time	step	t.	First	we	prove	the	base	case

for	 	that	 .	We	begin	by	using	the	DDS	to
substitute	for	R(1)	and	B(1)	on	the	left-hand	side	of	the	equation.	After	expanding	and
simplifying,	we	get



Next	we	factor	what	remains	on	the	right-hand	side:

Thus

and	this	completes	the	proof	of	the	base	case.

Next	we	need	to	show	the	induction	step	that	if	the	result	is	true	for	t,	then	it	is	also	true
for	 .	This	means	we	need	to	show	that	if

then	it	is	also	true	that

Once	again	we	begin	by	using	the	DDS	to	substitute	for	 	and	 	on	the	left-
hand	side.	Then	we	simplify.	Using	identical	algebra	from	the	base	case	gives	us



The	last	step	is	to	use	our	induction	hypothesis	on	the	right-hand	side	to	yield

This	completes	the	proof	of	the	theorem.

Next	we	move	to	the	fractional	exchange	ratio.	Recall	that	for	any	time,	t,	the	fractional
exchange	ratio,	denoted	FERt,	is	defined	to	be	the	ratio	of	the	relative	losses	for	Blue	to	the
relative	losses	for	Red	during	time	step	t.	We	sometimes	drop	the	subscript	on	the	FER	and	in
that	case	we	mean	the	initial	value	FER1.	For	any	t	we	have

In	particular	we	note	 .	The	theorem	below	shows	how	important	the	quantity	FER
is:	it	tells	us	at	the	outset	how	the	battle	will	end.

Theorem	3.1

With	the	FER	defined	as	above,	we	have	the	following	three	cases:

1.	 If	 ,	then	Blue	will	win.

2.	 If	 ,	then	Red	will	win.

3.	 If	 ,	then	both	sides	will	be	put	out	of	action.

Proof:	We	prove	case	1	by	assuming	 	and	showing	that	this	implies	that	
.	We	assume	throughout	that	R(t)	and	B(t)	are	nonnegative	(otherwise	the

model	does	not	make	physical	sense).

First	we	claim	that	if	 ,	then	FERt	is	strictly	decreasing	in	t	so	that



To	see	this	we	first	use	the	Lanchester	square	law	to	show	that	 	for	all	t.	If	
,	then	 ,	which	in	turn	by	the	square	law	implies	that	

.	(The	term	 	must	be	positive.)	Then	we	get	

	and	 	as	required.

Next	we	show	that	 	implies	that	 .	We	start	with	the	definition	for
FERt	and	use	the	Lanchester	DDS	to	make	substitutions.	We	get

Next	we	do	some	algebra	to	force	FERt	to	appear

The	last	step	is	to	show	that

The	first	part	of	the	inequality	follows	from	our	initial	assumption	that	both	R(t)	and	B(t)



are	nonnegative.	To	see	that	the	second	part	of	the	inequality	is	satisfied,	we	note	that	

	if	and	only	if	 ,	which	in	turn	is	true	if	and

only	if	 .	This	last	inequality	holds	by	our	assumption	that	 .	Thus	
	whenever	 ,	and	this	completes	the	proof	that	FERt	is	strictly

decreasing.

Finally	we	are	ready	to	proceed	with	the	main	part	of	our	proof	that	the	number	of	Red
forces	tends	to	zero.	Some	of	the	algebra	is	very	similar	to	what	we	have	already	done.
First	we	have

By	our	previous	work	and	our	assumption,	we	know	that	 .	Hence	

	and	we	get

It	follows	by	the	same	reasoning	that	 .	We	note	that	the	right-hand

side	of	this	last	inequality	must	go	to	zero	as	long	as	 .	This	inequality

holds	as	long	as	 ,	or,	equivalently,	 .	After	some	algebra	we	see
that	the	requirement	is	equivalent	to	 ,	which	must	hold	else	all	of	Red’s
forces	are	eliminated	during	the	first	time	step.	Thus	we	have	shown	that	either	Red	is



eliminated	during	the	first	time	step	or	R(t)	must	tend	to	0	as	the	battle	goes	on.	This
completes	the	proof	of	case	1,	and	case	2	follows	by	symmetry.

To	complete	the	proof	of	the	theorem,	we	assume	 .	Since	 ,	we	have	
,	and	by	Lanchester’s	square	law,	we	know	that	for	all	t	we	have

Thus	for	all	t	we	have	 ,	or	 .	For	the	Red	side	write

For	the	Blue	side	similar	work	gives	 .	Thus	both	the	Red	and
Blue	sides	in	this	case	decrease	exponentially	to	zero	since	 .	This	completes
the	proof	of	the	theorem.



APPENDIX	C	
DERIVATION	OF	THE	FER = 1	LINE	FOR	THE	HUGHES
SALVO	MODEL
Recall	that	for	the	Hughes	salvo	model,	the	fractional	exchange	ratio	is	given	by

If	 ,	then	we	have

Multiplying	out	on	both	sides	and	collecting	terms	on	the	left	give	us

Thus	we	have	a	quadratic	equation	in	R	that	we	can	solve	with	the	quadratic	formula	
,	where	 ,	 ,	and	 .	Plugging	these	values	into

the	quadratic	formula	and	simplifying	gives

where	only	the	positive	choice	is	of	interest.	So	we	see	that	the	line	that	represents	 	is
a	line	through	the	origin	in	the	B,R-plane	with	slope	equal	to



APPENDIX	D	
THE	WAITING	TIME	PRINCIPLE
In	this	appendix	we	supply	a	proof	of	the	Waiting	Time	Principle	that	uses	some	material	from
second	semester	calculus	and	ideas	from	probability.

Theorem	4.4

Consider	a	compartment	in	a	discrete	dynamical	system	where	a	fixed	proportion	of	the
compartment	leaves	each	day.	Then	the	average	amount	of	time	spent	in	that	compartment
(in	days)	is	equal	to	the	reciprocal	of	the	proportion	who	leave	each	day.	In	other	words,

Equivalently,	we	write

Proof:	Before	we	begin	work	on	the	Waiting	Time	Principle	directly,	we	state	the	infinite
sum	version	of	the	geometric	series	formula:

Theorem	D.1

Let	c	be	any	real	number	and	let	x	be	any	real	number	such	that	 .	Then

To	get	an	idea	why	this	result	is	true,	recall	the	finite	sum	version:

Now	consider	what	would	happen	if	we	let	the	number	of	terms,	n,	get	larger	and	larger.
On	the	left-hand	side	we	are	just	adding	more	terms,	but	on	the	right-hand	side	the	term	xn
gets	smaller	and	smaller	because	 .	In	the	limit	as	the	number	of	terms	goes	to
infinity,	the	term	xn	goes	to	0.	Thus	we	have	the	required	result:



Turning	our	attention	back	to	the	Waiting	Time	Principle,	we	let	x	be	the	proportion
leaving	the	compartment	each	day	and	note	that	 .	The	case	where	 	is	not
interesting	because	this	would	mean	nothing	leaves	the	compartment	each	day,	and	in	that
case	the	waiting	time	would	be	undefined.	At	the	other	extreme	if	 ,	then	the
compartment	is	completely	emptied	in	one	day,	and	the	waiting	time	would	therefore	be	1
day	in	which	case	the	result	holds.	Thus	we	concentrate	on	the	case	where	 .

We	can	view	x	as	the	probability	that	a	member	of	the	compartment	will	leave	on	any
given	day.	Thus	the	probability	of	a	member	leaving	on	the	first	day	will	be	x.	The
probability	of	a	member	leaving	on	the	second	day,	though,	will	be	 .	This	is
because	in	order	to	leave	on	the	second	day,	the	member	must	not	have	left	on	the	first
day.	The	probability	of	leaving	on	the	second	day	is	therefore	the	probability	of	not
leaving	on	the	first	day,	 ,	times	the	probability	of	leaving	on	the	second.	Similarly,	the
probability	of	leaving	on	the	third	day	will	be	the	probability	of	not	leaving	on	day	1
times	the	probability	of	not	leaving	on	day	2	times	the	probability	of	leaving	on	day	3:	

.	Continuing	in	this	way	we	know	the	probability	of	leaving	on	day	4	is	
and	on	day	5	is	 .	We	can	see	the	pattern	now.	The	probability	of	a	member
leaving	on	day	n	is	the	probability	of	having	not	left	on	the	first	 	days	times	the
probability	of	leaving	on	day	n,	or	 .

The	average	waiting	time	(also	known	as	the	expected	value	of	the	waiting	time)	is	the
weighted	average	of	all	possible	waiting	times	multiplied	by	their	respective
probabilities.	Thus	the	average	waiting	time	is	given	by

Factoring	out	the	x	gives

The	expression	inside	the	parentheses	we	recognize	as	the	derivative	of	the	expression

which	we	rewrite	as

Now	the	expression	inside	the	parentheses	is	an	infinite	geometric	series	whose	sum	we
know	from	the	infinite	geometric	series	formula:



Working	back	through	our	derivation,	we	write

Thus	we	can	rewrite	the	expression	 ,	which
equals

Finally	we	get	that	the	average	waiting	time	will	be

This	completes	the	proof.



APPENDIX	E	
CREATING	COBWEB	DIAGRAMS	IN	EXCEL

In	order	to	get	Excel	to	produce	a	cobweb	diagram,	first	we	need	the	reproduction

function	for	our	DDS.	Here	we	let	 .	Next	we	set	up	our	Excel
spreadsheet	to	graph	the	reproduction	function	along	with	the	line	 	on	the	same	axes.
We	will	also	need	two	additional	columns	for	the	cobweb	diagram.

The	setup	is	shown	in	Figure	E.1.	We	set	 	as	our	initial	population	for	the	cobweb
diagram,	so	the	initial	point	on	the	cobweb	is	(60, 0).

What	makes	the	creation	of	the	formulas	tricky	is	that	we	have	to	have	Excel	create	the
points	in	the	order	they	are	to	appear.	From	(60, 0)	we	move	up	to	the	graph	of	f(x).	This
means	the	next	point	on	our	cobweb	will	be	(60, f(60)).	We	get	Excel	to	compute	this	new
point	as	in	Figure	E.2.

For	our	next	point	we	need	to	move	horizontally	to	the	line	 .	This	means	the	x-
coordinate	of	the	new	point	will	be	the	y-coordinate	of	the	current	point.	Since	we	need	to
be	on	the	line	 ,	the	y-coordinate	of	the	new	point	will	be	the	same	as	the	x-coordinate
of	the	new	point.	In	Figure	E.3	we	show	the	Excel	formulas	that	make	this	happen.

We	need	one	more	point	before	copying	the	Excel	formulas	down.	The	next	point	results
from	moving	vertically	to	the	graph	of	the	reproduction	function.	This	means	the	new	point
will	have	the	same	x-coordinate	as	the	current	point	and	the	new	y-coordinate	will	be	the
reproduction	function	evaluated	at	the	x-coordinate.	The	Excel	version	is	shown	in	Figure
E.4.	The	results	are	shown	in	Figure	E.5.

Figure	E.1	Excel	setup	for	producing	a	cobweb	diagram.



Figure	E.2	Calculating	the	second	point	on	the	cobweb	diagram.

Figure	E.3	Moving	horizontally	to	the	next	point	on	the	cobweb	diagram.

Figure	E.4	Moving	vertically	to	the	next	point	on	the	cobweb	diagram.



Figure	E.5	Resulting	point	after	moving	vertically	to	the	reproduction	curve.

Finally	we	are	ready	to	copy	the	formulas	down,	but	it	works	a	little	differently	in	this
case.	Here	the	formulas	are	based	on	two	rows	rather	than	just	one,	and	we	need	to
preserve	the	two-row	structure.	So	we	select	the	 	block	of	cells	made	up	of	columns
D	and	E	and	rows	6	and	7;	then	we	drag	the	formulas	down	with	the	thin	cross	pointer.
Because	we	are	copying	two	rows	at	a	time,	we	need	to	copy	down	for	an	even	number	of
rows.	Figure	E.6	shows	the	result	with	formulas	displayed.

To	get	the	cobweb	on	a	graph,	we	first	create	the	graph	for	the	reproduction	function	and
the	line	 	in	the	usual	way.	Once	we	have	that	graph,	we	add	the	cobwebbing	points	by
first	selecting	the	points	we	want	to	add	to	our	graph.	Once	we	do	that,	we	do	a	copy	and
paste	onto	the	graph.	Specifically,	we	copy	the	cobweb	points	we	want	to	add,	then	we
click	somewhere	on	the	graph	of	the	reproduction	function.	Now	from	the	Paste	drop-
down	menu,	we	select	PasteSpecial.	In	the	dialog	box	that	appears,	we	check	the	box	for
Categories	(X	Values)	in	First	Column.	The	completed	dialog	box	is	shown	in	Figure	E.7.
After	clicking	“Okay”	our	graph	should	be	complete.	We	show	the	completed	graph	in
Figure	E.8.



Figure	E.6	Result	of	copying	down	formulas	for	cobweb	diagram.



Figure	E.7	Paste	Special	dialog	box.



Figure	E.8	Completed	cobweb	diagram.



APPENDIX	F	
PROPORTION	OF	TOTAL	CREDIT	DISTRIBUTED	DOES
NOT	EXCEED	1
We	assume	there	are	 	teams	that	all	play	each	other	once.	If	teams	distribute	a	just-for-

playing	credit	of	 	to	teams	they	defeat	and	 	to	teams	that	defeat	them,	then	the	total
proportion	of	credit	distributed	by	any	team	is	given	by

Since	wins	plus	losses	must	equal	the	number	of	games	played,	 ,	we	can	rewrite	the
above	equality	as

We	need	to	show	that

or,	equivalently,	that

After	multiplying	out	and	collecting	terms	on	the	right,	we	must	show	that

After	some	algebra	we	rewrite	the	expression	on	the	right	as

Since	N	is	at	least	two	and	is	always	greater	than	the	number	of	possible	losses	for	a	team,	we
see	by	inspection	that	the	last	expression	must	be	positive.	This	completes	the	proof.
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